

SureSelect Max

Fast ハイブリダイゼーション法によるターゲットエンリッチメント

イルミナプラットフォーム用 NGS

和文プロトコル [2024年9月版 和文]

Version A0 対応

アジレント SurePrint テクノロジーで製造した SureSelect プラットフォーム For Research Use Only. Not for use in Diagnostic Procedure

通知

© Agilent Technologies, Inc. 2024

本マニュアルのいかなる部分も、米国および国際著作権法に準拠する Agilent Technologies, Inc.からの事前の合意および書面による同意なしに、いかなる形式または手段 (電子的保存および検索または他の言語への翻訳を含む) でも複製することはできません。

本プロトコルについて

プロトコルは予告なく変更になることがあります。プロトコルを日本語化するにあたり、作業時間が発生するため、日本語プロトコルは英語の最新バージョンに比べて、遅れが生じます。製品ご購入の際は、必ず英語版プロトコルの Version をお確かめの上、日本語版が古い場合は、使用プロトコルについて、弊社までお問い合わせいただきますようお願い申し上げます。

本日本語プロトコルは、英語版の

SureSelect Max Target Enrichment using Fast Hybridization For NGS using Illumina Platform Version A0, September 2024 (G9689-90000) に対応しています。

本プロトコルに関するご質問やご意見などございましたら、下記のメールアドレスにご連絡ください。

email_japan@agilent.com

確認

Oligonucleotide sequences ©2006, 2008, and 2011 Illumina, Inc. All rights reserved.

イルミナシーケンサーシステムおよび関連するアッセイでのみ使用できます。

保証

本書に含まれる資料は「現状有姿」で提供され、将来の改版に際しては、予告なしに変更される可能性があります。 さらに、適用法で認められる最大限の範囲で、Agilent は、本書および本書に含まれる情報に関して、明示または黙示を問わず、商品性および特定目的への適合性の黙示の保証を含むがこれらに限定されない、全ての保証を否認します。Agilent は、本書または本書に含まれる情報の提供、使用またはパフォーマンスに関連するエラーまたは偶発的もしくは間接的な損害について責任を負わないものとします。Agilent とユーザーが、本書の内容と矛盾する保証条件を別個の契約書として結んでいる場合は、別個の契約書の保証条件が優先されます。

安全上の注意

CAUTION

CAUTION 表示は危険性を示します。正しく実行または遵守されなかった場合に、製品の損傷や重要なデータの損失につながる可能性のある操作手順や方法などを示しています。CAUTION 表示の個所は、その条件を完全に理解し満たすまで、その先に進まないでください。

WARNING

WARNING 表示は危険性を示します。操作手順への注意を喚起するもので、この表示を無視して誤った取扱いをすると、人が死亡または重傷を負う可能性が想定される内容を示しています。

WARNING 表示の個所は、条件を完全に理解し満たすまで、その 先に進まないでください。 本資料は、SureSelect Max Fast ハイブリダイゼーションモジュールと SureSelect プローブを使用して、イルミナ社のペアエンドマルチプレックス DNA/RNA シーケンシングライブラリのターゲットエンリッチメントを行うために最適化されたプロトコルです。 ライブラリは NGS のためにプレキャプチャまたはポストキャプチャ方式でプールすることが出来ます。 ターゲットエンリッチメントをしたライブラリはそのままイルミナ社のシーケンサーでの NGS 解析に使用できます。 このプロトコルの工程を実施する前に、前半のワークフローセグメントで、 SureSelect Max ライブラリを作製する必要があります。 別紙のライブラリ調製のプロトコルを参照ください。

1. はじめに

この章では、実験をはじめる前に理解する必要がある情報 (安全上の注意点、必要な試薬や機器など) について説明しています。必ず実験前にお読みください。

2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント

この章では、調製した DNA/RNA ライブラリから SureSelect プローブを用いてターゲットフラグメントをハイブリダイズし、Fast ハイブリダイゼーション条件 (2~3 時間) でキャプチャする手順を説明しています。

3. 補足資料: NGS と解析のガイドライン

この章では、NGS サンプル準備から解析までのガイドラインについて説明しています。

4. リファレンス

この章では、試薬キットの内容およびトラブルシューティングの参照情報を記載しています。

1. はじめに	5
ワークフローの概要	6
ワークフローで使用する SureSelect Max モジュールとプローブ	8
追加で必要な試薬・器具・消耗品	9
操作と安全に関する注意事項	10
2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント	11
Step 1. ハイブリダイゼーション用ライブラリの準備	12
Option 1: ライブラリの分注 (ポストキャプチャプーリングワークフロー)	12
Option 2: ライブラリのプール (プレキャプチャプーリングワークフロー)	12
Step 2. SureSelect Probe によるライブラリのハイブリダイゼーション	13
Step 3. キャプチャ用ストレプトアビジンビーズとバッファーの調製	17
Step 4. ハイブリダイズしたライブラリのキャプチャ	18
Step 5. キャプチャしたライブラリの増幅	20
Step 6. 最終ライブラリの精製	22
Step 7. ライブラリ DNA の品質確認と定量	24
ポストキャプチャプーリングガイドライン	26
3. 補足資料: NGS と解析のガイドライン	27
SureSelect Max ライブラリの構造	28
シーケンスセットアップとランのガイドライン	29
解析パイプラインのガイドライン	30
SureSelect Max DNA/RNA ワークフロー用 AGeNT software ガイドライン	31
RNA ストランド性ガイドライン	31
SureSelect Max UDI プライマー情報	32
SureSelect max Index 配列情報	33
4. リファレンス	41
キットの内容	42
コンポーネントの内容	42
トラブルシューティングガイド	43
クイックリファレンスプロトコル:Max Fast ハイブリダイゼーションターゲットエンリッチメント	45

1. はじめに

ワークフローの概要	6
ワークフローで使用する SureSelect Max モジュール	8
追加で必要な試薬・器具・消耗品	9
操作と安全に関する注意事項	10

この章では、実験をはじめる前に理解する必要がある情報 (安全上の注意点、必要な試薬や機器など) について説明しています。必ず実験前にお読みください。

NOTE

本プロトコルに記載されている以外の non-Agilent プロトコルを用いて使用する場合、キットは保証の対象外となり、技術サポートも適用外となります点、ご了承ください。

1. はじめに

ワークフローの概要

SureSelect Max システムは、NGS 用の DNA または RNA ライブラリの調製とターゲットエンリッチメントのための柔軟なワークフローオプションを提供します。モジュール形式で、特定のワークフローに対応したキットが用意されています。本資料では、図 1のワークフローサマリーのように、SureSelect Max DNA/RNA ライブラリを、対応する SureSelect XT HS プローブを用いて Fast ハイブリダイゼーション条件で、ターゲットエンリッチメントを行うために最適化されたプロトコルを提供します。 Fast ハイブリダイゼーションプロトコルにはプレキャプチャおよびポストキャプチャライブラリープーリングオプションと、ワークフローを 2 日に分けて実施する overnight hold (16 時間まで)のプロトコルが含まれます。

詳細に関しては 11 ページの "2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント" を参照してください。 上流の DNA/RNA ライブラリ調製モジュールについては別紙のプロトコルを参照ください。

Upstream SureSelect Max Library Prep Options:

DNA libraries using enzymatic fragmentation DNA libraries using Covaris shearing RNA libraries

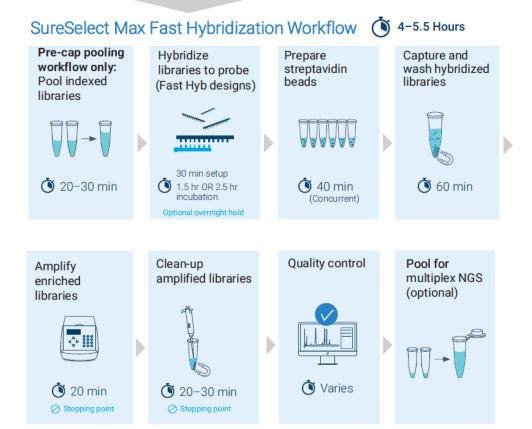


図 1 Fast ハイブリダイゼーション法による SureSelect Max ターゲットエンリッチメントの概要 所要時間とプロトコル中の Stopping point を参照として記載しています。 所要時間は 16 反応を 1.5~2.5 時間のハイブリダイゼーション時間 (プローブデザインに依存) でサンブル処理する場合にかかる時間です。 パラメーターによって所要時間は変わります。

SureSelect Max システムは、以前の SureSelect プラットフォームから以下の点について変更・改良がされています。

- ・ 合理化された酵素断片化ライブラリ調製プロトコル: DNA 断片化から末端修復、dA 付加までを 1 ステップで実施。強化されたケミストリで、より低濃度のサンプルに対応
- ・ 強化された増幅反応ケミストリとマスターミックス試薬
- ・ キャプチャ前 QC のオプション化:原液ライブラリサンプルのキャプチャをサポート
- ・ Fast ハイブリダイゼーションケミストリの向上と合理化されたキャプチャ工程
- ・ シンプルなプロトコルによるターンアラウンドタイムの短縮

SureSelect Max 試薬は SureSelect XT HS2 を含む、他の SureSelect システムとの互換性がありません。

1. はじめに

ワークフローで使用するSureSelect Maxモジュールとプローブ

本資料では、SureSelect Max DNA/RNA ライブラリを、対応する SureSelect プローブを用いて、Fast ハイブリダイゼーション条件で、ターゲットエンリッチメントを行うために最適化されたプロトコルについて説明しています。 このプロトコルに必要な SureSelect 試薬を表 1 と表 2 に記載します。

表 1 Fast ハイブリダイゼーション法によるターゲットエンリッチメントに使用する SureSelect Max 試薬

モジュール名	16 反応キット*	96 反応キット
SureSelect Max Fast Hyb Kit [†]	G9689A	G9689B
SureSelect Max Blockers and Primers Kit for ILM	G9699A	G9699B
SureSelect Max Purification Beads‡	G9962A (5 mL)	G9962B (30 mL)
SureSelect XT HS Probe	イブリダイゼーションワークフ てください。	情報を記載しています。SureSelect Max Fast ハフローでは 90 min Hyb/HS デザインプローブを選択しフロー (ポストキャプチャ/プレキャプチャ) に対応したフい。

^{* 16} 反応キットはポストキャプチャプーリングワークフローで 16 サンプル、あるいはプレキャプチャプーリングワークフローで 96 サンプルを処理することが出来ます。

表 2 Probe 情報

プローブ名	Design ID	オーダー情報
推奨のプレデザインプローブ		
SureSelect XT HS PreCap Human All Exon V8	S33266340	プレキャプチャプーリング用またはポストキャプチャプーリング用
SureSelect XT HS PreCap Human All Exon V8+UTR	S33613271	「プレデザインプローブのオーダー情報は Agilent のウェブペー - ジあるいは SureDesign から取得できます。 詳しくはお問い
SureSelect XT HS PreCap Human All Exon V8+NCV	S33699751	- うめるいは Surebesign かつ取得 Cさよす。詳しへはの問い - 合わせください。
SSel XT HS and XT Low Input Human All Exon V7	S31285117	
SureSelect XT HS Clinical Research Exome V4	S34226467	
カスタムプローブ		
SureSelect Custom Tier1 1-499 kb		プローブはカスタムデザインツール SureDesign でデザインでき
SureSelect Custom Tier2 0.5 -2.9 Mb	ます。詳しくはお問い	合わせください。
SureSelect Custom Tier3 3 −5.9 Mb		
SureSelect Custom Tier4 6 −11.9 Mb		
SureSelect Custom Tier5 12-24 Mb		
アジレントコミュニティデザイン 様々な分野のエキスパートとのコラボレーションで作成された カスタムパネルの情報は、弊社のコミュニティデザイン (NGS) サイトをご覧ください。		

[†] SureSelect Streptavidin beads を含みます。別途購入する必要はありません。

[‡] AMPure XP beads を使用することも可能です (9 ページの表 3 参照)。

追加で必要な試薬・器具・消耗品

ワークフローを実施するために追加で準備する試薬・器具・消耗品を表 3と表 4に記載しています。

CAUTION

プロトコルの特定のステップでは液量が 0.2 mL を超える場合があります。サーマルサイクラーで使用するプラスチック消耗品に、液を 0.25 mL 以上入れられることを確認してください。

表 3 追加で必要な器具・消耗品

品名	メーカーと品番	備考
サーマルサイクラー (96 ウェル、0.2 ml ブロック)	相当品	プロトコルでは試薬の余熱とサンプルのインキュベーションで 2 台のサーマルサイクラーを使用します。詳細は13ページを確認してください。
サーマルサイクラーに適した プラスチックウェア:・96-well tube plates また は8-well strip tubes ・フラットまたはドーム型キャップストリップ*	相当品	処理できるサンプル数と使用するサーマルサイクラーの 台数を抑えるため、1度の実験で 1~3 本のストリップ チューブで実施することを推奨します。96 well plate を 用いて行うことも可能です。
濃縮遠心機	Savant SpeedVac model DNA120 または相当品	プレキャプチャプーリングワークフローでのみ使用します。 †
ビーズ分離用マグネット	Thermo Fisher Scientific p/n 12331D または相当品	ウェルの一方に磁気ビーズが集まるタイプを必ず選んでください。リング状に磁気ビーズが集まるタイプは使用できません。
DNA LoBind チューブ, 1.5ml PCR clean, 250 pieces	Eppendorf p/n 022431021 または 相当品	-
遠心分離機	Eppendorf microcentrifuge, model 5417C または相当品	-
96 ウェルプレートもしくは 8 strip tubes 遠心 機	KUBOTA またはワケンビーテック または相当品	-
ピペット及びマルチチャネルピペット	Rainin Pipet-Lite Multi Pipette または相当品	-
ピペットチップ 滅菌、Nuclease-Free、 エアロゾルブロックフィルター付き	相当品	-
ボルテックスミキサ	相当品	_
アイスバケツ	相当品	_
パウダーフリー手袋	相当品	_
核酸分析システム	10 ページの 表 4 から選択	
1X Low TE Buffer	Thermo Fisher Scientific p/n 12090-015 または相当品	10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA
Nuclease-free Water	Thermo Fisher Scientific p/n AM9930 または相当品	DEPC 処理ではないこと
99.5% Ethanol, molecular biology grade	Wako p/n 054-07225 または相当 品	-
オプション:AMPure XP Kit (5 mL)	Beckman Coulter Genomics p/n A63880	SureSelect Max Purification Beads の代替として使用可 (表 1 を参照)

^{*}フラットまたはドーム型キャップストリップの使用や、選択したキャップの最適なパフォーマンスに必要なアクセサリ (例:コンプレッションマット) の使用はサーマルサイクラーの製造元の推奨に従ってください。使用するサーマルサイクラーとプラスチックウェアの組み合わせで、サンプルウェルがしっかりと密閉されることと、熱伝導のために装置の加熱蓋とバイアルキャップが最適に接触することを確認してください。

⁺ハイブリダイゼーション前にライブラリをプールするためには。濃縮遠心が使用できない場合のプロトコルの変更については 43 ページのトラブルシューティングを参照して下さい。

1. はじめに

表 4 推奨の核酸分析プラットフォーム(いずれかを選択)*

品名	メーカーと型番
Agilent 4200/4150 TapeStation	Agilent p/n G2991AA / G2992AA
消耗品	
High Sensitivity D1000 Screen Tape	p/n 5067-5584
High Sensitivity D1000 試薬キット	p/n 5067-5585
96-well sample plate	p/n 5042-8502
96-well plate foil seals	p/n 5067-5154
8-well tube strips	p/n 401428
8-well tube strip caps	p/n 401425
Agilent 5200/5300/5400 Fragment Analyzer	Agilent p/n M5310AA / M5311AA / M5312AA
消耗品	
HS NGS Fragment Kit (1 - 6000 bp)	p/n DNF-474-0500

^{*}ライブラリは 2100 バイオアナライザ (G2939BA) と、High Sensitivity DNA Kit (p/n 5067-4626) を使用して測定することも可能です。

操作と安全に関する注意事項

- ・ ヌクレアーゼの試薬への混入を避けるために、操作を行う場合は、必ずパウダーフリーのラボ用手袋を着用 し、適切な溶液、ピペット、ヌクレアーゼフリー エアロゾル防止フィルター付きピペットチップを使用ください。
- ・ 実験工程全体を通して、サンプル間での PCR 産物のコンタミネーションを防ぐため、以下を実施することをお 勧めします。
 - 1. PCR 前のサンプルを扱う場所と PCR 後のサンプルを扱うエリアを分け、それぞれのエリアで専用の機器、消耗品、試薬を使用してください。 特に、PCR 後のエリアで使用するものを PCR 前の工程で使用するのは避けて下さい。
 - 2. 実験スペースは常にクリーンな状態にしてください。 PCR 前の工程では作業台を 10% bleach solution やその相当品により、日常的に清潔に保ってください。
 - **3.** PCR 前のエリアで試薬を使用するときは、常にヌクレアーゼフリーのエアロゾル防止フィルターつきのピペットチップのついた専用のピペットを使用してください。
 - **4.** パウダーフリーの手袋を着用してください。コンタミの可能性があるものの表面に触れた後は必ず手袋を変えるなど、ラボの衛生を守ってください。
- ・ SureSelect Max プロトコルで使用する試薬にはとても粘性が高いものがあります。プロトコルで示されている方法で混合するようにしてください。
- ・ PCR プレートもしくはストリップチューブの cap strip を外す必要のある工程では、再びキャップをするときには、常に新しい cap strip を使用してください。サーマルサイクラーやその他の工程で、cap の変形が起こりえるため、一度使用した cap strip の再利用は、サンプルの蒸発によるロスやコンタミネーション、インキュベーション中のサンプル温度が不正確になるなどのリスクがあります。
- ・ Biosafety Level 1 (BSL1) のルールに基づき、実験を行います。
- ・ プロトコル中に表記されている Stopping Point でサンプルを 4°C または-20°C で保存できます。サンプルの繰り返し凍結融解は避けてください。

CAUTION

実験室で実験を行う際は、各実験室において決められた規則に従い、保護用の用具 (白衣、安全眼鏡など) を着用してください。

2. Fastハイブリダイゼーション法によるターゲットエンリッチメント

Step 1. ハイブリダイゼーション用ライブラリの準備	12
Option 1: ライブラリの分注 (ポストキャプチャプーリングワークフロー)	12
Option 2: ライブラリのプール (プレキャプチャプーリングワークフロー)	13
Step 2. SureSelect Probe によるライブラリのハイブリダイゼーション	13
Step 3. キャプチャ用ストレプトアビジンビーズとバッファーの調製	17
Step 4. ハイブリダイズしたライブラリのキャプチャ	18
Step 5. キャプチャしたライブラリの増幅	20
Step 6. 最終ライブラリの精製	22
Step 7. ライブラリ DNA の品質確認と定量	24
ポストキャプチャプーリングガイドライン	26

この章では、SureSelect Max DNA または cDNA ライブラリをターゲット特異的なプローブとハイブリダイゼーション する工程が示されています。 ハイブリダイゼーション後、ターゲットの DNA をストレプトアビジンビーズでキャプチャし PCR 増幅します。 ライブラリはハイブリダイゼーション後(ポストキャプチャプーリングワークフローセットアップ)、 または ハイブリダイゼーション前(プレキャプチャプーリングワークフローセットアップ) にマルチプレックス NGS のためにプールします。

標準的な 1 日で操作する SureSelect Max Fast Hyb ワークフローは、ハイブリダイゼーションステップ後すぐにキャプチャおよび増幅ステップに進みます。必要であればハイブリダイズサンプルは一晩おくことができ、その場合は 14ページにある簡単なプロトコル変更を加えることでキャプチャおよび増幅を次の日に行うことが可能です。

ハイブリダイゼーションおよびキャプチャのワークフローは表 5の試薬を使用します。使用前に指示に従い、準備します (使用ページのカラムを参照してください)。

表 5 ハイブリダイゼーション&キャプチャに使用する試薬

保管場所·温度	キット構成品	使用方法	使用ページ
-80°C	SureSelect Probe	13 ページのハイブリダイゼーションセットアップの前に 氷上で溶かし、保存、ボルテックスで混合	15ページ
SureSelect Max Blockers and Primers Module for ILM, stored at -20°C	Blocker Mix, ILM (blue cap)	氷上で溶かし、保存。ボルテックスで混合	14 ページ
SureSelect Max Target Enrichment Kit Fast Hyb Module Box 2 Module, stored at -20°C	SureSelect RNase Block (purple cap)	氷上で溶かし、保存。ボルテックスで混合	15ページ
	SureSelect Max Fast Hyb Buffer (bottle)	室温で溶かし保存	15ページ
+4°C	SureSelect Streptavidin Beads (clear cap)	4°C から使用直前に取り出し、ボルテックスで混合	17 ページ
SureSelect Max Target Enrichment Kit Fast Hyb	SureSelect Binding Buffer (bottle)	すぐに使用可能	17 ページ
	SureSelect Wash Buffer 1 (bottle)	すぐに使用可能	18 ページ
Module Box 1, stored at RT	SureSelect Wash Buffer 2 (bottle)	すぐに使用可能	17 ページ

Step 1. ハイブリダイゼーション用ライブラリの準備

Option 1: ライブラリの分注 (ポストキャプチャプーリングワークフロー)

ハイブリダイゼーション反応では nuclease-free water で調製した 12 μL のライブラリサンプルを使用します。ハイブリダイゼーションに使用するライブラリサンプルの推奨インプット量は表 6 を参照してください。 最終 NGS ライブラリの複雑性を維持するために 12 μL のライブラリサンプル全量をハイブリダイゼーション反応に使用してください。

残りのライブラリ溶液 (~2 μL) は後のトラブルシュートや QC のために一時保存することを推奨します。

表 6 ハイブリダイゼーションインプットガイドライン

ライブラリタイプ	推奨量	- 最低量*
gDNA ライブラリ (DNA input)	12 μL の調製した gDNA ライブラリ原液 (キャプチャ 前 QC は任意)	≥500 ng library DNA brought to 12 µL with nuclease-free water
cDNA ライブラリ (RNA input)	12 µL の調製した cDNA ライブラリ原液 (キャプチャ 前 QC は任意)	≥200 ng library DNA brought to 12 µL with nuclease-free water

^{*}オプションのキャプチャ前 QC を行う場合は、できる限り最少量を使用するようにしてください。ライブラリの標準化が必要でない場合も、複雑性を最大限にするために最大量 (原液 12 µL) の使用を推奨します。

- 1. 各 DNA ライブラリをハイブリダイゼーション用に準備したストリップチューブに入れます。
- 2. 必要に応じて、最終容量が 12 μL になるように各ライブラリサンプルウェルに nuclease-free water を加えます。

14 ページのステップ 2 で使用するまでサンプルを氷上に置きます。

Option 2: ライブラリのプール (プレキャプチャプーリングワークフロー)

1. プローブデザインに応じて、8 または 16 サンプルのインデックス付加ライブラリサンプルを、表 7 に従って、等量ずつプールします。キャプチャ反応プールごとに、適切な量の各インデックス付き gDNA ライブラリサンプルをストリップチューブの 1 つのウェルに混合します。

表 7 プレキャプチャプーリングの推奨

プローブデザイン	プールする ライブラリ数	ライブラリタイプ	プールする ライブラリの総量	各ライブラリの インプット量
SureSelect XT HS PreCap Human All Exon V7 or	8	DNA	4 μg	500 ng
V8 (including V8+UTR/V8+NCV) or SureSelect XT HS PreCap Clinical Research Exome V4	8	cDNA (RNA input)	1.6 µg	200 ng
SureSelect XT HS PreCap Custom Probes	16	DNA	4 μg	250 ng
	16	cDNA (RNA input)	1.6 µg	100 ng

2. 各ライブラリプールを nuclease-free water で 12 µL に調製します。

プールの液量が 12 μ L を超える場合は、濃縮遠心機を 45°C 以下に設定し、完全にサンプルを乾燥させずに各ウェルが 12 μ L 未満になるように濃縮遠心機で液量を減らします。 最終液量を測り、 nuclease-free water で 12 μ L に調製します。 濃縮遠心機が使用できない場合は 43 ページのトラブルシューティングを参照してください。

ウェルにキャップをし、5~10 秒激しくボルテックスします。スピンダウンして液を集め、14 ページのステップ 2 で使用するまで氷上に置きます。

Step 2. SureSelect Probeによるライブラリのハイブリダイゼーション

NOTE

以下のハイブリダイゼーションとキャプチャプロトコルでは、以下の2ステップで試薬の予熱のために2台のサーマルサイクラーが必要となります。

- 1) 17 ページ ステップ 6 のビーズの予熱
- 2) 18 ページ ステップ 2 および 3 のキャプチャインキュベーション時の Wash Buffer 2 の 予熱

2 台のサーマルサイクラーが使用できない場合は代わりの温度調節ができるデバイスを用いて試薬の予熱を行うことが出来ます。ライブラリサンプルを含む反応液のインキュベーションは、指示されたタイミングで、サーマルサイクラーを用いて実施してください。

1. SureSelect XT HS Human All Exon V8 プローブ (V8 / V8 + UTR / V8 + NCV) および SureSelect XT HS Clinical Research Exome V4 は表 8、その他の全てのプローブは表 9 のようにサーマルサイクル プログラムを設定します。 蓋は 105°C に設定します。 サンプルをステップ 4 で入れるまで一時停止します。 サンプルをロードする前に装置を予熱します。

CAUTION

ハイブリダイゼーションプログラムの間に、オペレーターは表 8 または表 9 の最終列に記載の操作を実行する必要があります。

1 日で実施するワークフローの場合は、ハイブリダイゼーションの完了前 (表 8 のセグメント 5 または表 9 のセグメント 4) にストレプトアビジンビーズと洗浄と予熱をし、すぐハイブリダイゼーションにすすめるようにします。

2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント

表 8 SureSelect XT HS Human All Exon V8/V8 + UTR/V8 + NCV および SureSelect XT HS Clinical Research Exome V4 プローブのハイブリダイゼーションプログラム(30 uL vol)

セグメント	サイクル数	温度	時間	オペレーターの操作
1	1	95°C	5 minutes	ハイブリダイゼーション試薬の調製 (15ページのステ
2	1	65°C	10 minutes	ップ 4 と 15 ページのステップ 5 を参照)
3	1	65°C	Hold	ハイブリダイゼーション Mix の添加 (16 ページのステップ 6 を参照)
4	60	68°C [‡]	1 minutes	キャプチャに使用する試薬の準備 (17 ページを参
		37°C	3 seconds	照、所要時間約 45 分)
5	1	68°C	60 minutes	
6	1	68°C	Hold briefly	セグメント 5 のハイブリダイゼーション完了後すぐにキャプチャ (18 ページ) を開始

表 9 その他の全ての SureSelect XT HS プローブのハイブリダイゼーションプログラム (30 µL vol)

セグメント	サイクル数	温度	時間	オペレーターの操作
1	1	95°C	5 minutes	ハイブリダイゼーション試薬の調製 (15ページのステップ 4と15ページのステップ 5を参照)
2	1	65°C	10 minutes	Blocking
3	1	65°C	Hold	ハイブリダイゼーション Mix の添加 (16 ページのス テップ 6 を参照)
4	60	68°C [‡]	1 minutes	キャプチャに使用する試薬の準備 (17 ページを参
		37°C	3 seconds	照、所要時間約45分)
5	1	68°C	Hold briefly	セグメント 4 のハイブリダイゼーション完了後すぐにキャプチャ (18 ページ) を開始

NOTE

このプロトコルは、次の変更を加えることで一晩休止して 2 日間のワークフローに変更可能です。

- サーマルプログラムの最後のセグメント (表 8 のセグメント 6 または表 9 のセグメント 5) を 68°C Hold から 21°C Hold に変更します。ハイブリダイズしたサンプルは、21°C で 16 時間までおくことができます。
- 表 8 のセグメント 4、5 または表 9 のセグメント 4 で開始する、17 ページのハイブ リッドキャプチャ用試薬の調製を省略し、2 日目をそのステップから再開します。
- 2. 各 DNA ライブラリサンプルウェルに、SureSelect Max Blocker Mix を 5 μL 加えます。ストリップチューブに 蓋をし、高速のボルテックスミキサで 5 秒間攪拌し混合します。軽くスピンダウンし液を底に集め泡を除きます。

CAUTION

サーマルサイクラーの蓋の温度が熱く、やけどをする恐れがあります。蓋の近くで操作する場合は気をつけて作業してください。

3. 蓋をしたサンプルプレートもしくはストリップチューブをサーマルサイクラーに移し、14 ページの表 8 または表 9 の通り設定されたサーマルプログラムを開始します。プログラムのセグメント 1 および 2 を完了させセグメント 3 Hold に進みます。

重要:セグメント 3 Hold の間に追加の試薬をサーマルサイクラー中のサンプルウェルに加えます。 セグメント 1 および 2 の間にステップ 4 およびステップ 5 に従って、追加のハイブリダイゼーション試薬を調製します。必要な場合、サーマルサイクラーのセグメント 3 の 65°C Hold の間に調製できます。

4. 表 10 を参照し、SureSelect RNase Block 25%溶液を調製します。混合し、氷上に置きます。

表 10 RNase Block 溶液の調製

試棄	1 反応	8 反応分 (余剰量含む) *	24 反応分 (余剰量含む) †
SureSelect RNase Block (purple cap)	0.5 μL	4.5 μL	13.0 µL
Nuclease-free water	1.5 μL	13.5 µL	39.0 μL
Total	2 μL	18 µL	52 μL

^{* 16-}Hyb ターゲットエンリッチメントキットには 1 ランあたりで 8 Hyb を含めた場合の 2 ラン分に相当する量が含まれます。

NOTE

ステップ 5 の試薬の調製は使用するタイミングで、室温でおこなってください。プローブを含む溶液は必要以上に室温に置かないようにしてください。

サンプル数が多い場合には、ステップ 5 で調製したマスターミックスをあらかじめストリップチューブに分注し、ステップ 6 でマルチチャネルピペットでまとめてサンプルに移すことが出来ます。この変更によってピペッティングによる試薬のロスが増えるため、ステップ 5 の記載よりも多めの液量で調製する必要があります。

5. 使用するキャプチャライブラリのターゲットサイズに応じて、Probe Hybridization Mix を調製します。ターゲットサイズ 3 Mb 以上のキャプチャライブラリでは表 11、ターゲットサイズ 3 Mb 未満のキャプチャライブラリでは表 12 の内容に従ってください。カスタムデザインのプローブは、デザインサイズをプローブチューブのラベルでご確認ください。

表に記載されている溶液を室温で混合します。高速のボルテックスミキサで 5 秒間攪拌し、よく混合したあと、軽くスピンダウンします。 ステップ 6 でウェルに添加するまで室温に置きます。

表 11 ターゲットサイズ 3 Mb 以上のプローブの Probe Hybridization Mix の調製

試薬	1 反応	8 反応分 (余剰量含む)	24 反応分 (余剰量含む)
25% RNase Block solution (from step 4)	2 μL	18 µL	50 μL
Probe (with design ≥3 Mb)	5 μL	45 μL	125 µL
SureSelect Max Fast Hyb Buffer	6 µL	54 μL	150 μL
Total	13 µL	117 µL	325 μL

表 12 ターゲットサイズ 3 Mb 未満のプローブの Probe Hybridization Mix の調製

試薬	1 反応	8 反応分 (余剰量含む)	24 反応分 (余剰量含む)
25% RNase Block solution (from step 4)	2 μL	18 µL	50 μL
Probe (with design<3 Mb)	2 μL	18 µL	50 μL
SureSelect Max Fast Hyb Buffer	6 μL	54 μL	150 μL
Nuclease-free water	3 μL	27 μL	75 μL
Total	13 µL	117 µL	325 μL

^{+ 96-}Hyb ターゲットエンリッチメントキットには 1 ランあたりで 24 Hyb を含めた場合の 4 ラン分に相当する量が含まれます。

2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント

- **6.** サーマルサイクルプログラムの Segment 3 Hold が始まったら、DNA と Blocker 混合サンプルをサーマルサイクラーにいれたまま、ステップ 5 で調製して室温に置いてある Probe Hybridization Mix 13 μL を各サンプルウェルに加えます。
 - ゆっくり 8~10 回ピペッティングしよく混合します。
 - この時点で、ハイブリダイゼーション反応液の液量は約30 µL になっています。
- 7. プレートもしくはストリップチューブを新しいキャップストリップで蓋をします。適切なキャッピングツールなどを用いて、全手のウェルを確実に密閉します。軽くボルテックスで混合し、軽く遠心してチューブの底の泡をのぞき、すぐにサーマルサイクラーに戻します。
- **8.** サーマルサイクラーのプログラムを再開し、調製したライブラリ DNA サンプルをプローブにハイブリダイズします。 ハイブリダイゼーションとキャプチャを同じ日に行う場合は、17 ページのストレプトアビジンビーズの調製をインキュベーション中に行ってください。

Step 3. キャプチャ用ストレプトアビジンビーズとバッファーの調製

NOTE

ハイブリダイゼーションとキャプチャを同じ日に行う場合は、ハイブリダイゼーション反応完了の 45 分前 (14 ページの

表 8 または表 9) にキャプチャ試薬の準備を始めてください。最後のキャプチャビーズの 余熱 (下記ステップ 6) をプログラムが終了する 10 分前に始めます。

21°C Hold で一晩おき、キャプチャを次の日に行う場合は、キャプチャステップを始める直前に以降の工程を開始します。

17 ページのビーズ調製とライブラリキャプチャ、70°での 6 回のキャプチャ後洗浄のインキュベーションに使用するサーマルサイクラーの蓋の温度は 105°C に設定します。

- 1. キャプチャ後の洗浄ステップで使用する、Wash Buffer 2 を 200 μL ずつ新しいストリップチューブに分注します。 1 サンプル当たり 6 ウェル分を分注します。 分注後の Wash buffer 2 は予熱の指示があるまで室温に置きます。
- 2. ボルテックスミキサを用いて、保存中に容器の底にたまったストレプトアビジンビーズをよく攪拌し再懸濁します。
- 3. 新しいストリップチューブを用意し、懸濁したビーズを 1 ハイブリダイゼーションサンプルあたり 50 µL、各チューブ (well) に入れます。
- 4. 下記手順に従いビーズを洗浄します。
 - a. 200 µL の SureSelect Binding Buffer を加えます。
 - **b.** 20 回ピペッティングするか、もしくは well に蓋をして高速のボルテックスで 5~10 秒撹拌し軽くスピンダウンします。
 - c. ストリップチューブをマグネットスタンドに置きます。
 - **d.** 5 分または溶液が透明になるまで静置し、ビーズを吸い込まないように注意しながら上澄み液を取り除いて廃棄します。
 - e. step a~step d の工程をさらに 2 回繰り返し、トータルで 3 回洗浄を行ないます。
- 5. ビーズを 200 μL の SureSelect Binding Buffer に再懸濁します。
- **6.** ハイブリダイゼーション反応 (表 8 のセグメント 5 または表 9 のセグメント 4) 完了の 10 分前に Binding Buffer に懸濁したキャプチャビーズを、サーマルサイクラーで 68°C で 10 分間予熱します。

Step 4. ハイブリダイズしたライブラリのキャプチャ

- 1. ストレプトアビジンビーズの調製が完了し、ハイブリダイゼーションのサーマルサイクラプログラムが最後の Hold ステップ (14 ページの表 8 または表 9) に到達したら、サンプルをサーマルサイクラーから室温に移します。
 - a. すぐにマルチチャンネルピペットを用いて、各ハイブリダイゼーションサンプルの全量 (約30 µL) を、68°C の状態を維持ししたまま、予熱したストレプトアビジンビーズ200 µL の入ったウェルに移します。
 - **b.** 150 μL 容量にセットした 200 μL ピペットで 8~10 回ピペッティングし混合し、ビーズを十分に懸濁します。 新しいキャップでウェルに蓋をします。
- 2. 68°C で 10 分間インキュベーションします。
- **3.** 17 ページで分注した Wash Buffer 2 (200 μL/well) を 70°C で予熱しはじめます。 バッファーはステップ 8 で使用するまで保温します。
- 4. 10 分のインキュベーション (上記ステップ 2) が完了後、スピンダウンし液を底に集めます。
- **5.** プレートもしくはストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約 1、2 分)。ビーズを吸い込まないように注意しながら上澄み液を取り除いて廃棄します。
- **6.** ビーズに 200 μL の SureSelect Wash Buffer 1 を加え、15~20 回ピペッティングを行い、完全にビーズを再懸濁します。
- 7. ストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約1分)。 ビーズを吸い込まないように注意しながら上澄み液を取り除いて廃棄します。

軽くスピンダウンし、Wash Buffer 1 を底に集め、磁石スタンドにセットし 20 μL 容量のピペットで上清を完全に取り除きます。

CAUTION

キャプチャの特異性を確保するためには、以降の洗浄工程で使用する SureSelect Wash Buffer 2 が 70°C に予熱されていることが重要です。

ステップ 8 の洗浄のステップで、70°C でのインキュベーション前のピペッティングとボルテックスのステップは室温で行ってください。

組織培養用のインキュベーターや、その他温度振れ幅の大きい装置は 70°C のインキュベーションに使用しないでください。

- 8. 以下のステップに従い Wash Buffer 2 で合計 6 回ビーズを洗浄します。 **開始前にプレートもしくはストリップチューブを磁石スタンドから外し、室温のチューブラックに移します。**
 - a. 200 μL の 70°C で予熱した Wash Buffer 2 を再懸濁します。次に進む前に、ビーズが完全に懸 **濁されていることを確認してください。**しっかりと懸濁するために、以下のように 2 ステップで行う方法を 推奨します。混合中、キャプチャサンプルは室温に置きます。
 - i. 150 μL 容量にセットした 200 μL ピペットで 15~20 回ピペッティングし、ビーズを完全に懸濁します。 気泡が出来ないようにゆっくりと優しくピペッティングします。
 - ii. 新しいキャップでウェルに蓋をし、8 秒間ボルテックスします。ビーズが沈まない程度にスピンダウンし液を底に集め、気泡を取り除きます。
 - b. サンプルをサーマルサイクラーで 70°C で 5 分間インキュベーションします。
 - **c.** プレートもしくはストリップチューブを室温で磁石スタンドにセットします。
 - **d.** 1 分間静置し、溶液が透明になるまで待ちます。ビーズを吸い込まないように注意しながら上澄み液を取り除いて廃棄します。サンプルを室温のチューブラックに移します。
 - e. ステップ a~ステップ d をさらに 5 回繰り返します。合計で洗浄を 6 回行います。
 - 6 回目の洗浄操作が完了したら、サンプルをスピンダウンし、20 μL 容量のピペットで、残っている Wash Buffer 2 を完全に取り除きます。
- **9.** Nuclease-free water を 24 μL ずつ、各サンプルに加えます。 ピペッティングを 8 回行い、ビーズを再懸濁します
- 10. 21 ページの PCR 反応で使用するまで氷上に置きます。

NOTE

キャプチャした DNA/cDNA はポストキャプチャの増幅ステップまで、ストレプトアビジンビーズに結合しています。

2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント

Step 5. キャプチャしたライブラリの増幅

ポストキャプチャ増幅ワークフローでは、表 13の試薬を使用します。使用前に指示通りに準備します (使用ページのカラムを参照)。

表 13 ポストキャプチャ増幅に使用する試薬

試薬ボックス・保管温度	試薬名	使用方法	使用ページ
SureSelect Max Target Enrichment Kit Fast Hyb module Box 2, stored at −20°C	Amplification Master Mix (red cap or bottle)	Thaw on ice then keep on ice, Mix thoroughly by inversion at least 5X . Do not vortex .	20 ページ
SureSelect Max Blockers and Primers Module for ILM, stored at -20°C	SureSelect Post-Capture Primer Mix (clear cap)	Thaw on ice then keep on ice, vortex to mix.	21 ページ
+4°C	SureSelect Max Purification Beads OR AMPure XP Beads	Equilibrate at room temperature for at least 30 minutes before use, vortex to mix.	22 ページ

1. サーマルサイクラーを表 14 のように設定し開始します。蓋は 105°C で加温し、21 ページのステップ 6 で使用するまで一時停止します。

表 14 ポストキャプチャ PCR サーマルサイクルプログラム (50 µL vol)

セグメント	サイクル数		時間
1	1	98°C	45 seconds
2	10~16 (プローブデザインサイズに基づくサイ	98°C	15 seconds
クル数の推奨は表 15を参照)	クル数の推奨は表 15を参照)	60°C	30 seconds
		72°C	30 seconds
3	1	72°C	1 minute
4	1	4°C	Hold

表 15 ポストキャプチャ PCR サイクル数の推奨

Probe デザインサイズ	サイクル数		
	DNA input libraries	RNA input libraries	
Probes <0.2 Mb	16 cycles	16 cycles	
Probes 0.2-3 Mb	12-16 cycles	14 cycles	
Probes 3-5 Mb	11-12 cycles	13 cycles	
Probes >5 Mb (including Human All Exon and Exome probes)	10-11 cycles	12 cycles	

NOTE

ライブラリのクロスコンタミネーションを防ぐために、PCR 反応溶液(ライブラリ DNA 以外の全ての試薬)の調製は、ラボで決められたクリーンエリアもしくは UV 滅菌灯を備えた PCR フード内にて陽圧の環境下で実施してください。

2. Amplification Master Mix (赤いキャップまたはボトル) を転倒混和し (ボルテックスはしないこと)、軽くスピンダウンします。

3. 表 16 を参照し、適切な量のポストキャプチャ PCR reaction mix を氷上で調製します。ボルテックスでよく 混合します。

表 16 ポストキャプチャ PCR reaction mix の組成

Reagent	1 反応	8 反応分 (余剰量含む)	24 反応分 (余剰量含む)
Amplification Master Mix (red cap or bottle)	25 µL	225 μL	650 μL
SureSelect Post-Capture Primer Mix (clear cap)	1 μL	9 μL	26 μL
Total	26 μL	234 µL	676 μL

- **4.** 表 16 の内容で調製した PCR reaction mix 26 μL を、ストレプトアビジンビーズに結合したターゲットエン リッチ DNA/cDNA が 24 μL 入った各サンプルウェルに加えます。
- **5.** ビーズが均一になるまでピペッティングでよく混合します。サンプルがウェルの壁面にはねないようにしてください。このステップでチューブをスピンダウンしないでください。
- 6. サーマルサイクラーにセットし、表 14のプログラムを開始します。

NOTE

次のセクションで使用する SureSelect Max Purification ビーズまたは AMPure XP ビーズは冷蔵庫から取り出し、使用前に 30 分以上室温におくようにします。

7. PCR 増幅の完了後、軽くスピンダウンし精製にすすみます。

NOTE

以降の精製のプロトコルは、ハイブリッドキャプチャに使用したストレプトアビジンビーズが入ったままで行うことが出来ます。

ストレプトアビジンビーズを取り除く場合は、精製前に以下の工程を追加してください。
1) 増幅ライブラリの入ったプレートまたはチューブを室温でマグネットスタンドにセットします。2) 溶液が透明になるまで 2 分ほど待ちます。3) 上清 (約 50 μL) を新しいプレートまたはストリップチューブに移し、精製工程を行います。ストレプトアビジンビーズはライブラリ溶液を回収した後に廃棄します。

Stopping Point

次のステップに進まない場合は、サンプルを 4°C で一晩、さらに長期保存の場合は-20°C で保存してください。

Step 6. 最終ライブラリの精製

室温に戻した SureSelect Max Purification Beads または AMPure XP を用いて増幅したライブラリを精製します。 精製プロトコルでの重要なパラメーターを表 17 に示します。

表 17 ポストキャプチャ PCR 後の磁性ビーズによる精製のパラメーター

パラメーター	液量
室温に戻した精製ビーズの液量	50 μL
溶出溶液の添加量	25 μL Low TE Buffer
溶出されたサンプルの回収量	約 24 µL

- 1. ステップ 8 で使用する 70%エタノールを、1 サンプルあたり 400 µL (と余剰分) を調製します。
- 2. ビーズ溶液の状態や色が均一になるまで、ボルテックスミキサでよく混合します。
- 3. 50 µL のビーズ懸濁液を、約 50 µL のストレプトアビジンビーズ懸濁液を含む各サンプルに加えます。
- **4.** ピペッティングを 15~20 回または高速で 5~10 秒ボルテックスを行い、ビーズが底に集まらない程度に軽く スピンダウンします。
- 5. 室温で 5 分間インキュベーションします。
- 6. ストリップチューブを磁石スタンドにセットします。溶液が透明になるまで待ちます (約2~5分)。
- 7. ストリップチューブを磁石スタンドにセットしたまま、**ビーズを吸い込まないように注意して**、透明な上澄み液を取り除き、廃棄します。上澄み液を除去するときビーズに触れないように注意します。
- 8. ストリップチューブを磁石スタンドにセットしたまま、70%エタノール溶液を各サンプルウェルに 200 µL ずつ加えます。
- **9.** 溶液が透明になるまで、そのまま 1 分間静置します。その後エタノールを、ビーズを吸い込まないように注意して取り除きます。
- 10. ステップ8と9をもう一度繰り返し、計2回洗浄します。
- **11.** ストリップチューブを磁石スタンドから外し、蓋をして軽くスピンダウンし、サンプル中に残ったエタノールを集めます。ストリップチューブを再度磁石スタンドにおき、キャップをはずして 30 秒静置します。ビーズを吸い込まないように注意しながら、20 µL の容量のマイクロピペットを用いて、残ったエタノールを取り除きます。

NOTE

本プロトコルに記載されているビーズの乾燥ステップでは、集積したビーズにひび割れが生じるまで乾燥させないようにしてください。ビーズを過度に乾燥させると、溶出効率が低下する危険性があります。

- **12.** 蓋をせずにサンプルチューブを室温で 2~5 分乾燥させ、残存エタノールを完全に取り除きます。
- 13. 25 μL の Low TE Buffer を各サンプルウェルに加え、ライブラリ DNA を溶出します。
- **14.** ピペッティングを 10~15 回程度行うか、または高速で 5 秒ボルテックスを行い、すべてのビーズが再懸濁され、懸濁液にビーズの塊がないことや壁にビーズのペレットが残っていないことを確認します。サンプルが混合されたら、ビーズが底に集まらないように注意しながら、軽くスピンダウンし液を集めます。
- **15.** 室温で 2~5 分間インキュベーションします。長時間のインキュベーションによって特に長い DNA フラグメント の回収効率が向 上します。

- 16. ストリップチューブを磁石スタンドにセットし、溶液が透明になるまで静置します (最長5分)。
- **17.** 透明な上澄み液 (液量 約 24 µL) を新しいストリップチューブに移し、氷上に置きます。ビーズはこの時点で廃棄します。

NOTE

回収したサンプルにビーズのキャリオーバーがある場合はサンプルをマグネットスタンドにセットした状態で、サンプル QC やライブラリプール用の分注を行います。

Stopping Point

同じ日に NGS のためのライブラリープールをしない場合は、サンプルに蓋をして 4°C で一晩、さらに長期保存の場合は-20°C で保存してください(必要な場合は、保存前に QC 用に分注してください)。

2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント

Step 7. ライブラリDNAの品質確認と定量

各サンプルを表 18 のいずれかのプラットフォームを用いて分析します。各アッセイのユーザーガイド記載のインストラクションを参照してください。

表 18 ポストキャプチャライブラリ分析オプション

電気泳動装置	使用キット	サンプル必要量
Agilent 4200/4150 TapeStation system	High Sensitivity D1000 ScreenTape	2 μL
Agilent 5200, 5300 or 5400 Fragment Analyzer system	HS NGS Fragment Kit (1-6000 bp)	2 μL

各分析によりライブラリのサイズ分布を示すエレクトロフェログラムと、DNA または cDNA の濃度が出力されます。TapeStationのエレクトロフェログラムの典型例を図 2と図 3に示します。

解析ソフトウェアの Region 機能で 150~1000 bp の領域に設定し、ライブラリ DNA の平均サイズと濃度を確認します。 DNA フラグメントのサイズ分布については表 19 のガイドラインを参照してください。

表 19 ポストキャプチャライブラリ定性ガイドライン

ハイブリダイゼーションに使用したインプットサンプル	期待される平均フラグメントサイズ (150~1000 bp の領域)
DNA library prepared from intact DNA fragmented for 2x100 NGS	350 to 450 bp
DNA library prepared from intact DNA fragmented for 2x150 NGS	380 to 480 bp
DNA library prepared from FFPE DNA fragmented for 2x100 or 2x150 NGS	250 to 390 bp
cDNA library prepared from intact RNA	380 to 480 bp
cDNA library prepared from FFPE RNA	250 to 390 bp

2. Fast ハイブリダイゼーション法によるターゲットエンリッチメント

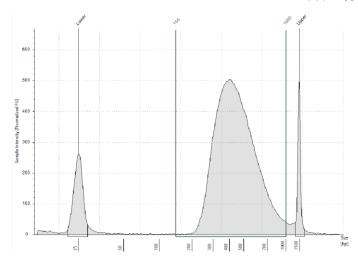


図 2 高品質な gDNA サンプルから調製したキャプチャ後のライブラリ (High Sensitivity D1000 ScreenTape アッセイ)

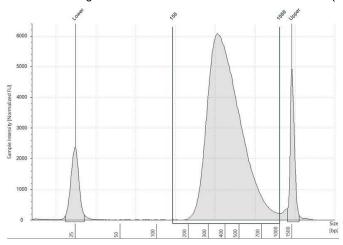


図 3 FFPE 由来 gDNA サンプルから調製したキャプチャ後のライブラリ (High Sensitivity D1000 ScreenTape アッセイ)

Stopping Point

次のステップに進まない場合は、サンプルに蓋をして 4°C で一晩、さらに長期保存の場合は -20°C で保存してください。

ポストキャプチャプーリングガイドライン

1つのシーケンスレーンにマルチプレックスできるインデックスライブラリの数は、研究デザインで必要なシーケンス量と、使用するシーケンサーの仕様により異なります。1レーンあたりのマルチプレックス数は、使用するプラットフォームのキャパシティや、1サンプルあたりに必要とするシーケンスデータ量により異なりますので、必ずイルミナ社の提供する最新のプロトコルをあわせて参照してください。

NOTE

SureSelect Max UDI ストリップおよびプレートは、イルミナの 2-および 4-チャンネルシステムで適切なカラーバランスとなるようにデザインされています。カラーバランスが維持できる推奨のサンプルプール数は最少で 4 サンプルです。連続した 4 種の SureSelect Max UDI はイルミナのガイダンスを満たす、最適なカラーバランスとなっています。2 または 3 サンプルをプールする際のカラーバランスやプール方式の詳細に関してはイルミナのガイドラインを参照ください。

以下のいずれかの手順に従い、各インデックスライブラリをプール中で等モル量になるように混合します。希釈には、Low TE などシーケンスプロバイダーが指定した希釈液を使用してください。

方法 1: プールするサンプルそれぞれを、1X Low TE を用いて終濃度が同じになるように希釈します (典型的な濃度は 4~15 nM、もしくは最も濃度が低いサンプルに合わせます)。その後、全てのサンプルを同じ容量混合して、最終的なプールを調製します。

方法 2: プールするサンプルは異なる濃度のまま、それぞれ適切な量を混合して、最終的にプール中で等モル量になるようにします。その後、プールを Low TE を用いて必要とされる容量にします。以下の式はプールに加える各インデックスサンプルの量を計算するための式です。

Volume of Index =
$$\frac{V(f) \times C(f)}{\# \times C(i)}$$

V(f): プールされたサンプルの最終的な必要量

C(f): プールに含まれる全ての DNA の最終的な濃度

(典型的な濃度は 4 nM~15 nM、もしくは最も濃度が低いサンプルに合わせます。)

#: プールするインデックスの数

C(i): 各インデックスサンプルの初期濃度

表 20 に 4 種のインデックスサンプル (それぞれ異なる初期濃度) の量と、最終的に 20 μ L の 10 μ M DNA または cDNA の各濃度にするのに必要な Low TE Buffer の例を示します。

表 20 10 nM の濃度でトータル 20 µL に調製する計算例

Component	V(f)	C(i)	C(f)	#	Volume to use (μL)
Sample 1	20 µL	20 nM	10 nM	4	2.5
Sample 2	20 µL	10 nM	10 nM	4	5
Sample 3	20 µL	17 nM	10 nM	4	2.9
Sample 4	20 µL	25 nM	10 nM	4	2
Low TE					7.6

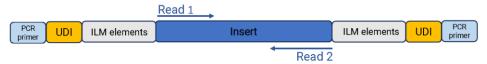
シーケンスプロバイダーが提示している条件でライブラリを保存してください。一般的には短期間であれば-20°Cで保存できます。

3. 補足資料: NGSと解析のガイドライン

SureSelect Max ライブラリの構造	28
シーケンスセットアップとランのガイドライン	29
解析パイプラインのガイドライン	30
SureSelect Max DNA/RNA ワークフロー用 AGeNT software ガイドライン	31
RNA ストランド特異性ガイドライン	31
SureSelect Max UDI プライマー情報	32
SureSelect max Index 配列情報	33

この補足資料ではイルミナプラットフォームを用いた NGS と SureSelect Max ライブラリリードの処理方法について説明しています。

3. 補足資料: NGS と解析のガイドライン


SureSelect Maxライブラリの構造

イルミナに互換性のあるキットモジュールで調製した、SureSelect Max ライブラリ構造を図 4 に示します。 調製されたライブラリの各フラグメントは、1 つのターゲットインサートが、イルミナ社のシーケンサーを用いてマルチプレックスシーケンスするのに必要なシーケンスモチーフにはさまれている状態です。 ライブラリは標準的なイルミナ社のペアエンドプライマーおよびケミストリで、そのままシーケンスすることができます。

Libraries made with MBC Adaptor

Libraries made with MBC-Free Adaptor

図 4 ILM シーケンス用 SureSelect Max ライブラリの構造

各フラグメントにはターゲットインサート (青)が含まれ、以下に示す各エレメントに挟まれています; イルミナペアエンドシーケンシングエレメント(灰色)、Unique Dual Index (黄)、ライブラリ PCR プライマー (水色)、オプションの分子バーコード (MBC) (オレンジ)。 MBC は 3 bp のバーコード+1 bp の dark base で構成されます。

シーケンスセットアップとランのガイドライン

イルミナ社の適切な Pair-End Cluster Generation Kit を用いてクラスター増幅に進んでください。表 21 は SureSelect Max のターゲットエンリッチした NGS ライブラリに適した、イルミナ社のシーケンサーとケミストリの組み合わせのガイドラインです。 イルミナ社 NGS プラットフォームについては、キットの構成およびシーディング濃度のガイドラインについてイルミナ社のドキュメントを参照してください。

表 21 イルミナ社キット選択ガイドライン

Platform	Run Type	Read Length	SBS Kit Configuration	Chemistry	Seeding Concentration	
MiSeq	All Runs	2 x 150 bp or 2 x 250 bp	300 Cycle Kit 500 Cycle Kit	v2	9-10 pM	
			600 Cycle Kit	v3	12-16 pM	
NextSeq 1000/2000	All Runs	2 x 150 bp or 2 x 250 bp	300 Cycle Kit 600 Cycle Kit	Standard SBS	650-1000 pM	
			300 Cycle Kit	XLEAP-SBS	650-1000 pM	
NovaSeq 6000	Standard Workflow Runs	2 x 100 bp or 2 x 150 bp	200 or 300 Cycle Kit	v1.5	300-600 pM	
	Xp Workflow Runs	2 x 100 bp or 2 x 150 bp	200 or 300 Cycle Kit	v1.5	200-400 pM	
iSeq 100			300 Cycle Kit	v2	50-150 pM	
NextSeq 500/550	All Runs	2 x 100 bp or 2 x 150 bp	300 Cycle Kit	v2.5	1.2-1.5 pM	
NovaSeq X	All Runs	2 x 150 bp	300 Cycle Kit	v1	90-180 pM	

シーディング濃度とクラスター密度は、ライブラリの DNA 断片のサイズレンジや、求められるアウトプットやデータの質に基づき、最適化が必要な場合もあります。表 21 またはイルミナ社提供の内容に記載されている範囲の中間のシーディング濃度から最適化を行ってください。より良好なシーケンス QC のための低濃度のスパイクインによる PhiX コントロールにつきましては、イルミナ社の推奨に従ってください。

スタンドアロンの装置ソフトウェアあるいは Loal Run Manager (LRM) や Illumina Experiment Manager (IEM)、BaseSpace といったイルミナ社のツールを用いて、各サンプルの Read 1 と Read 2 の FASTQ ファイルを精製するようにシーケンスランを設定します。ライブラリの長さに応じた適切な Cycle または Read Length と 8-bp dual index reads を設定してください。2x150 bp シーケンスランの設定例について表 22 に示します。

表 22 2x 150 bp シーケンスのラン設定

Run Segment	Cycles/Read Length
Read 1	151*
Index 1 (i7)	8
Index 2 (i5)	8
Read 2	151*

^{*}追加の1 cycle についてはイルミナ社の推奨に従ってください。

各プラットフォームのセットアップやソフトウェアオプションについては以下のガイドラインに加えて、イルミナ社の推奨に従ってください。

3. 補足資料: NGS と解析のガイドライン

- ・サンプルインデックス (P5 および P7) には 8 bp のインデックスリードが必要です。インデックス塩基配列情報については、33 ページを参照してください。
- SureSelect Max ライブラリのシーケンスにはカスタムプライマーは使用しません。ランセットアップ中の Read1、Read2、Index 1、Index 2 の項目は空欄または未選択にしてください。
- ・MBC 付加ライブラリの場合、イルミナ社のランセットアップソフトウェアおよびリード処理ソフトウェアの adaptor trimming option を使用しないようにしてください。アダプターは後述の Agilent 社のソフトウェアを用いてトリミングされ、アダプター配列内の分子バーコード (MBC) が適切に処理されるようにします。
- ・イルミナ社の LRM、IEM または BaseSpace を用いてランセットアップを行う場合には、イルミナ社のカスタムライブラリ調製キットと index kit を用いた場合のインストラクションとサポート情報に従ってセットアップを行ってください。 SureSelect Max index 配列は"SureSelect Max Index Sequence Resource"から Excel スプレッドシートをダウンロードできます。イルミナ社の各アプリケーションの仕様に従って、tsv/.csv ファイルフォーマットに変換するか、 Sample Sheet にコピーしてください。 もし選択したアプリケーションで SureSelect Max のラン設定についてサポートが必要な場合は、最終ページにある弊社サポート窓口にお問い合わせください。

解析パイプラインのガイドライン

以下のガイドラインは、SureSelect Max DNA/RNA ライブラリのデータ解析に適した典型的な NGS 解析パイプラインステップです。 お使いの NGS 解析パイプラインによって異なります。

- ・ イルミナの bcl2fastq、BCL Convert または DRAGEN ソフトウェアを用いて、デュアルインデックスに基づいて デマルチプレックスを行い、間違ったペアの P5 と P7 を除去します。MBC が付加されたライブラリの場合はイルミナの demultiplexing software の MBC/UMI トリミングオプションをオフにし、下流のツールで処理する ようにします。MBC なしのライブラリの場合、イルミナの demultiplexing software の MBC/UMI トリミング オプションをオンにします。
- MBC 付きのライブラリを調製し、解析パイプラインで MBC を使用しない場合は、デマルチプレッシングステップで最初の 5 塩基をトリミングまたはマスキングすることで MBC を除去できます。44 ページを参照してください。
- MBC 付きライブラリの場合、デマルチプレックスされた FASTQ データは、後述のツールのいずれかを使用して アダプター配列の除去 MBC 配列の抽出の前処理を行う必要があります。31 ページのアジレント AGENT ソフトウェアをこの前処理ステップに使用することが出来ます。

NOTE

リードの前処理は fgbio のような適切なオープンソースソフトウェアを用いて行うことが出来ます。 両側のアダプターと MBC 配列を適切に処理できるかオープンソースツールの性能を事前に検証する必要があります。 アジレント製以外のアダプタートリミングツールは反対側のアダプターから MBC を除くことが出来ず、アライメントの質に影響します。

SureSelect Max DNA/RNA ワークフロー用AGeNT softwareガイドライン

アジレントの AGeNT ソフトウェアは、Java ベースのツールキットで SureSelect Max DNA ライブラリのリード処理ステップに使用します。AGeNT ツールは、バイオインフォマティクスの専門知識を持つユーザーが、内部解析パイプラインの構築・統合・保守・トラブルシューティングを行えるように設計されています。 追加の情報やこのツールキットのダウンロードは AGeNT のサイトをご覧ください。 SureSelect XTHS2 用のインストラクションは SureSelect Max にも使用できます。

- バリアント検出の前に、デマルチプレックスした SureSelect Max ライブラリ FASTQ データの前処理をします。 AGENT Trimmer モジュールを使用してシーケンスアダプターを除去し、もしあれば MBC 配列を抽出します。
- ・ トリミングしたリードは、BWA-MEM (DNA ライブラリ) や STAR (RNA ライブラリ) のような適切なツールを使用してアライメントします (必要に応じてアライメントされた BAM ファイルに MBC を追加します)。
- ・ MBC 付きライブラリの場合は AGeNT CReaK (Consensus Read Kit) ツールを使用してコンセンサスリードを生成し、重複をマークまたは除去します。 CReaK には各ライブラリに適したコンセンサスリード生成オプションが含まれます (DNA ライブラリの場合 duplex、hybrid または single-strand mode、RNA ライブラリの場合 single-strand mode)。

得られた BAM ファイルはバリアント探索や遺伝子発現解析を含む下流の解析に使用できます。

RNAストランド特異性ガイドライン

SureSelect Max RNA シーケンシングライブラリ調製法は、second-strand 合成時に dUTP を使用することで RNA ストランド特異性を維持します。P5 端から読まれる Read 1 は poly-A RNA 転写鎖の相補鎖です。P7 端から読まれる Read 2 は poly-A RNA 鎖配列となります。ストランド特異性を決定するための解析を行う際にこの情報を考慮することが重要です。Picard tool を使用し、RNA sequencing metrics を評価する際にストランド特異性を適切に算出するためには、STRAND_SPECIFICITY=SECOND_READ_TANSCRIPTION_STRAND を含めることが必要です。

3. 補足資料: NGS と解析のガイドライン

SureSelect Max UDI プライマー情報

SureSelect Max unique dual indexing (UDI) はライブラリ 調製ワークフローセグメントにて、ライブラリフラグメントに付与されます。各フラグメントはユニークな 8 bp の P5 または P7 インデックスを含み (28 ページの図 4 参照)、イルミナプラットフォームでシーケンスできます。

NOTE

Agilent SureSelect 8-bp dual index は SureSelect Max および SureSelect XT HS2 の各キットフォーマットで共通です。マルチプレックスシーケンス用に、同じ番号のインデックスペアでインデックス付加したサンプルを混合しないでください。

インデックス配列は 33 ページから 40 ページに記載しています。インデックス配列は、"<u>SureSelect Max Index</u> <u>Sequence Resource</u>"からエクセルスプレッドシートをダウンロードできます。

NOTE

このリンクからはウェブサイトは開かれず、エクセルスプレッドシートが自動的に使用しているウェブブラウザの既定のフォルダにダウンロードされます。ファイルは Microsoft Excel またはその他の互換性のあるソフトウェアで開くことができます。最初のタブにスプレッドシートの内容と使用に関するインストラクションが記載されています。

表 24 から表 31 およびエクセルスプレッドシートでは、P7 インデックスは、対応するイルミナプラットフォームに共通なフォワード方向で記載されています。P5 インデックスは、プラットフォーム、シーケンスランセットアップおよび管理ツール (Local Run Manager や Instrument Run Setup など) に応じて、Forward / Reverse の 2 つの方向で示されています。イルミナ社のシーケンスプラットフォームおよび P5 の方向は表 23 を参照してください。サンプルシートやシーケンシングランの設定時に、P5 インデックスの向きを正しく設定することはデマルチプックスの成功に非常に重要です。イルミナのサポートドキュメントも併せて参照し、正しい P5 インデックスの方向を確認してください。

表 23 イルミナのプラットフォームに基づく P5 インデックス配列の方向

P5 Index Orientation	Platform
Forward	MiSeq
Reverse Complement*	NovaSeq 6000 with v1.5 chemistry
	NextSeq 500/550/1000/2000
	iSeq 100
	MiniSeq

^{*} 一部のランセットアップおよび管理ツールは、ランのために入力された P5 インデックス配列の相補鎖を自動的に作成します。使用しているプラットフォームと解析パイプラインツールの組み合わせに応じて、ランのセットアップ中に入力する正しいインデックスの向きをイルミナのサポートドキュメントも併せて参照し、確認してください。

SureSelect max Index 配列情報

インデックス配列は "SureSelect Max Index Sequence Resource" からエクセルスプレッドシート形式でダウンロードできます。

表 24 SureSelect Max Index Primer Pairs 1-48 (オレンジ色のプレートまたはストリップチューブ)

Primer	Index	P7 Index	Primer Pairs P5 Index	P5 Index	Primer	Index	P7 Index	P5 Index	P5 Index
Pair #	Strip	Forward	Forward	Reverse Complement	Pair #	Strip	Forward	Forward	Reverse Complement
1	A01	CAAGGTGA	ATGGTTAG	CTAACCAT	25	A04	AGATGGAT	TGGCACCA	TGGTGCCA
2	B01	TAGACCAA	CAAGGTGA	TCACCTTG	26	B04	GAATTGTG	AGATGGAT	ATCCATCT
3	C01	AGTCGCGA	TAGACCAA	TTGGTCTA	27	C04	GAGCACTG	GAATTGTG	CACAATTC
4	D01	CGGTAGAG	AGTCGCGA	TCGCGACT	28	D04	GTTGCGGA	GAGCACTG	CAGTGCTC
5	E01	TCAGCATC	AAGGAGCG	CGCTCCTT	29	E04	AATGGAAC	GTTGCGGA	TCCGCAAC
6	F01	AGAAGCAA	TCAGCATC	GATGCTGA	30	F04	TCAGAGGT	AATGGAAC	GTTCCATT
7	G01	GCAGGTTC	AGAAGCAA	TTGCTTCT	31	G04	GCAACAAT	TCAGAGGT	ACCTCTGA
8	H01	AAGTGTCT	GCAGGTTC	GAACCTGC	32	H04	GTCGATCG	GCAACAAT	ATTGTTGC
9	A02	CTACCGAA	AAGTGTCT	AGACACTT	33	A05	ATGGTAGC	GTCGATCG	CGATCGAC
10	B02	TAGAGCTC	CTACCGAA	TTCGGTAG	34	B05	CGCCAATT	ATGGTAGC	GCTACCAT
11	C02	ATGTCAAG	TAGAGCTC	GAGCTCTA	35	C05	GACAATTG	CGCCAATT	AATTGGCG
12	D02	GCATCATA	ATGTCAAG	CTTGACAT	36	D05	ATATTCCG	GACAATTG	CAATTGTC
13	E02	GACTTGAC	GCATCATA	TATGATGC	37	E05	TCTACCTC	ATATTCCG	CGGAATAT
14	F02	CTACAATG	GACTTGAC	GTCAAGTC	38	F05	TCGTCGTG	TCTACCTC	GAGGTAGA
15	G02	TCTCAGCA	CTACAATG	CATTGTAG	39	G05	ATGAGAAC	TCGTCGTG	CACGACGA
16	H02	AGACACAC	TCTCAGCA	TGCTGAGA	40	H05	GTCCTATA	ATGAGAAC	GTTCTCAT
17	A03	CAGGTCTG	AGACACAC	GTGTGTCT	41	A06	AATGACCA	GTCCTATA	TATAGGAC
18	B03	AATACGCG	CAGGTCTG	CAGACCTG	42	B06	CAGACGCT	AATGACCA	TGGTCATT
19	C03	GCACACAT	AATACGCG	CGCGTATT	43	C06	TCGAACTG	CAGACGCT	AGCGTCTG
20	D03	CTTGCATA	GCACACAT	ATGTGTGC	44	D06	CGCTTCCA	TCGAACTG	CAGTTCGA
21	E03	ATCCTCTT	CTTGCATA	TATGCAAG	45	E06	TATTCCTG	CGCTTCCA	TGGAAGCG
22	F03	GCACCTAA	ATCCTCTT	AAGAGGAT	46	F06	CAAGTTAC	TATTCCTG	CAGGAATA
23	G03	TGCTGCTC	GCACCTAA	TTAGGTGC	47	G06	CAGAGCAG	CAAGTTAC	GTAACTTG
24	H03	TGGCACCA	TGCTGCTC	GAGCAGCA	48	H06	CGCGCAAT	CAGAGCAG	CTGCTCTG

3. 補足資料: NGS と解析のガイドライン

表 25 SureSelect Max Index Primer Pairs 49-96 (オレンジ色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward				P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
49	A07	TGAGGAGT	CGCGCAAT	ATTGCGCG	73	A10	AACGCATT	ATAGTGAC	GTCACTAT
50	B07	ATGACGAA	TGAGGAGT	ACTCCTCA	74	B10	CAGTTGCG	AACGCATT	AATGCGTT
51	C07	TACGGCGA	ATGACGAA	TTCGTCAT	75	C10	TGCCTCGA	CAGTTGCG	CGCAACTG
52	D07	AGCGAGTT	TACGGCGA	TCGCCGTA	76	D10	AAGGCTTA	TGCCTCGA	TCGAGGCA
53	E07	TGTATCAC	AGCGAGTT	AACTCGCT	77	E10	GCAATGAA	AAGGCTTA	TAAGCCTT
54	F07	GATCGCCT	TGTATCAC	GTGATACA	78	F10	AAGAACCT	GCAATGAA	TTCATTGC
55	G07	GACTCAAT	GATCGCCT	AGGCGATC	79	G10	CTGTGCCT	AAGAACCT	AGGTTCTT
56	H07	CAGCTTGC	GACTCAAT	ATTGAGTC	80	H10	TACGTAGC	CTGTGCCT	AGGCACAG
57	A08	AGCTGAAG	CAGCTTGC	GCAAGCTG	81	A11	AAGTGGAC	TACGTAGC	GCTACGTA
58	B08	ATTCCGTG	AGCTGAAG	CTTCAGCT	82	B11	CAACCGTG	AAGTGGAC	GTCCACTT
59	C08	TATGCCGC	ATTCCGTG	CACGGAAT	83	C11	CTGTTGTT	CAACCGTG	CACGGTTG
60	D08	TCAGCTCA	TATGCCGC	GCGGCATA	84	D11	GCACGATG	CTGTTGTT	AACAACAG
61	E08	AACTGCAA	TCAGCTCA	TGAGCTGA	85	E11	GTACGGAC	GCACGATG	CATCGTGC
62	F08	ATTAGGAG	AACTGCAA	TTGCAGTT	86	F11	CTCCAAGC	GTACGGAC	GTCCGTAC
63	G08	CAGCAATA	ATTAGGAG	CTCCTAAT	87	G11	TAGTCTGA	CTCCAAGC	GCTTGGAG
64	H08	GCCAAGCT	CAGCAATA	TATTGCTG	88	H11	TTCGCCGT	TAGTCTGA	TCAGACTA
65	A09	TCCGTTAA	GCCAAGCT	AGCTTGGC	89	A12	GAACTAAG	ATACGAAG	CTTCGTAT
66	B09	GTGCAACG	TCCGTTAA	TTAACGGA	90	B12	AAGCCATC	GAGATTCA	TGAATCTC
67	C09	AGTAACGC	GTGCAACG	CGTTGCAC	91	C12	AACTCTTG	AAGCCATC	GATGGCTT
68	D09	CATAGCCA	AGTAACGC	GCGTTACT	92	D12	GTAGTCAT	AACTCTTG	CAAGAGTT
69	E09	CACTAGTA	CATAGCCA	TGGCTATG	93	E12	CTCGCTAG	GTAGTCAT	ATGACTAC
70	F09	TTAGTGCG	CACTAGTA	TACTAGTG	94	F12	AGTCTTCA	CAGTATCA	TGATACTG
71	G09	TCGATACA	TTAGTGCG	CGCACTAA	95	G12	TCAAGCTA	CTTCGTAC	GTACGAAG
72	H09	ATAGTGAC	TCGATACA	TGTATCGA	96	H12	CTTATCCT	TCAAGCTA	TAGCTTGA

表 26 SureSelect Max Index Primer Pairs 97-144 (青色のプレート)

Primer	Index		P5 Index Forward	P5 Index Reverse Complement	Primer		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
97	A01	TCATCCTT	CTTATCCT	AGGATAAG	121	A04	CAGGCAGA	AGACGCCT	AGGCGTCT
98	B01	AACACTCT	TCATCCTT	AAGGATGA	122	B04	TCCGCGAT	CAGGCAGA	TCTGCCTG
99	C01	CACCTAGA	AACACTCT	AGAGTGTT	123	C04	CTCGTACG	TCCGCGAT	ATCGCGGA
100	D01	AGTTCATG	CACCTAGA	TCTAGGTG	124	D04	CACACATA	CTCGTACG	CGTACGAG
101	E01	GTTGGTGT	AGTTCATG	CATGAACT	125	E04	CGTCAAGA	CACACATA	TATGTGTG
102	F01	GCTACGCA	GTTGGTGT	ACACCAAC	126	F04	TTCGCGCA	CGTCAAGA	TCTTGACG
103	G01	TCAACTGC	GCTACGCA	TGCGTAGC	127	G04	CGACTACG	TTCGCGCA	TGCGCGAA
104	H01	AAGCGAAT	TCAACTGC	GCAGTTGA	128	H04	GAAGGTAT	CGACTACG	CGTAGTCG
105	A02	GTGTTACA	AAGCGAAT	ATTCGCTT	129	A05	TTGGCATG	GAAGGTAT	ATACCTTC
106	B02	CAAGCCAT	GTGTTACA	TGTAACAC	130	B05	CGAATTCA	TTGGCATG	CATGCCAA
107	C02	CTCTCGTG	CAAGCCAT	ATGGCTTG	131	C05	TTAGTTGC	CGAATTCA	TGAATTCG
108	D02	TCGACAAC	CTCTCGTG	CACGAGAG	132	D05	GATGCCAA	TTAGTTGC	GCAACTAA
109	E02	TCGATGTT	TCGACAAC	GTTGTCGA	133	E05	AGTTGCCG	GATGCCAA	TTGGCATC
110	F02	CAAGGAAG	TCGATGTT	AACATCGA	134	F05	GTCCACCT	AGTTGCCG	CGGCAACT
111	G02	ATTGATGC	AGAGAATC	GATTCTCT	135	G05	ATCAAGGT	GTCCACCT	AGGTGGAC
112	H02	TCGCAGAT	TTGATGGC	GCCATCAA	136	H05	GAACCAGA	ATCAAGGT	ACCTTGAT
113	A03	GCAGAGAC	TCGCAGAT	ATCTGCGA	137	A06	CATGTTCT	GAACCAGA	TCTGGTTC
114	B03	CTGCGAGA	GCAGAGAC	GTCTCTGC	138	B06	TCACTGTG	CATGTTCT	AGAACATG
115	C03	CAACCAAC	CTGCGAGA	TCTCGCAG	139	C06	ATTGAGCT	TCACTGTG	CACAGTGA
116	D03	ATCATGCG	CAACCAAC	GTTGGTTG	140	D06	GATAGAGA	ATTGAGCT	AGCTCAAT
117	E03	TCTGAGTC	ATCATGCG	CGCATGAT	141	E06	TCTAGAGC	GATAGAGA	TCTCTATC
118	F03	TCGCCTGT	TCTGAGTC	GACTCAGA	142	F06	GAATCGCA	TCTAGAGC	GCTCTAGA
119	G03	GCGCAATT	TCGCCTGT	ACAGGCGA	143	G06	CTTCACGT	GAATCGCA	TGCGATTC
120	H03	AGACGCCT	GCGCAATT	AATTGCGC	144	H06	CTCCGGTT	CTTCACGT	ACGTGAAG

3. 補足資料: NGS と解析のガイドライン

表 27 SureSelect Max Index Primer Pairs 145-192 (青色のプレート)

	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
145	A07	TGTGACTA	CTCCGGTT	AACCGGAG	169	A10	CGCTCAGA	CTAACAAG	CTTGTTAG
146	B07	GCTTCCAG	TGTGACTA	TAGTCACA	170	B10	TAACGACA	CGCTCAGA	TCTGAGCG
147	C07	CATCCTGT	GCTTCCAG	CTGGAAGC	171	C10	CATACTTG	TAACGACA	TGTCGTTA
148	D07	GTAATACG	CATCCTGT	ACAGGATG	172	D10	AGATACGA	CATACTTG	CAAGTATG
149	E07	GCCAACAA	GTAATACG	CGTATTAC	173	E10	AATCCGAC	AGATACGA	TCGTATCT
150	F07	CATGACAC	GCCAACAA	TTGTTGGC	174	F10	TGAAGTAC	AATCCGAC	GTCGGATT
151	G07	TGCAATGC	CATGACAC	GTGTCATG	175	G10	CGAATCAT	TGAAGTAC	GTACTTCA
152	H07	CACATTCG	TGCAATGC	GCATTGCA	176	H10	TGATTGGC	CGAATCAT	ATGATTCG
153	A08	CAATCCGA	CACATTCG	CGAATGTG	177	A11	TCGAAGGA	TGATTGGC	GCCAATCA
154	B08	CATCGACG	CAATCCGA	TCGGATTG	178	B11	CAGTCATT	TCGAAGGA	TCCTTCGA
155	C08	GTGCGCTT	CATCGACG	CGTCGATG	179	C11	CGCGAACA	CAGTCATT	AATGACTG
156	D08	ATAGCGTT	GTGCGCTT	AAGCGCAC	180	D11	TACGGTTG	CGCGAACA	TGTTCGCG
157	E08	GAGTAAGA	ATAGCGTT	AACGCTAT	181	E11	AGAACCGT	TACGGTTG	CAACCGTA
158	F08	CTGACACA	GAGTAAGA	TCTTACTC	182	F11	AGGTGCTT	AGAACCGT	ACGGTTCT
159	G08	ATACGTGT	CTGACACA	TGTGTCAG	183	G11	ATCGCAAC	AGGTGCTT	AAGCACCT
160	H08	GACCGAGT	ATACGTGT	ACACGTAT	184	H11	GCCTCTCA	ATCGCAAC	GTTGCGAT
161	A09	GCAGTTAG	GACCGAGT	ACTCGGTC	185	A12	TCGCGTCA	GCCTCTCA	TGAGAGGC
162	B09	CGTTCGTC	GCAGTTAG	CTAACTGC	186	B12	GAGTGCGT	TCGCGTCA	TGACGCGA
163	C09	CGTTAACG	CGTTCGTC	GACGAACG	187	C12	CGAACACT	GCATAAGT	ACTTATGC
164	D09	TCGAGCAT	CGTTAACG	CGTTAACG	188	D12	TAAGAGTG	AGAAGACG	CGTCTTCT
165	E09	GCCGTAAC	TCGAGCAT	ATGCTCGA	189	E12	TGGATTGA	TAAGAGTG	CACTCTTA
166	F09	GAGCTGTA	GCCGTAAC	GTTACGGC	190	F12	AGGACATA	TGGATTGA	TCAATCCA
167	G09	AGGAAGAT	GAGCTGTA	TACAGCTC	191	G12	GACATCCT	AGGACATA	TATGTCCT
168	H09	CTAACAAG	AGGAAGAT	ATCTTCCT	192	H12	GAAGCCTC	GACATCCT	AGGATGTC

表 28 SureSelect Max Index Primer Pairs 193-240 (緑色のプレート)

Primer Pair #	Index Strip	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
193	A01	GTCTCTTC	GAAGCCTC	GAGGCTTC	217	A04	GCGGTATG	CACGAGCT	AGCTCGTG
194	B01	AGTCACTT	GTCTCTTC	GAAGAGAC	218	B04	TCTATGCG	GCGGTATG	CATACCGC
195	C01	AGCATACA	AGTCACTT	AAGTGACT	219	C04	AGGTGAGA	TCTATGCG	CGCATAGA
196	D01	TCAGACAA	AGCATACA	TGTATGCT	220	D04	CACAACTT	AGGTGAGA	TCTCACCT
197	E01	TTGGAGAA	TCAGACAA	TTGTCTGA	221	E04	TTGTGTAC	CACAACTT	AAGTTGTG
198	F01	TTAACGTG	TTGGAGAA	TTCTCCAA	222	F04	TCACAAGA	TTGTGTAC	GTACACAA
199	G01	CGTCTGTG	TTAACGTG	CACGTTAA	223	G04	GAAGACCT	TCACAAGA	TCTTGTGA
200	H01	AACCTAAC	CGTCTGTG	CACAGACG	224	H04	AGTTCTGT	GAAGACCT	AGGTCTTC
201	A02	AGAGTGCT	AACCTAAC	GTTAGGTT	225	A05	GCAGTGTT	AGTTCTGT	ACAGAACT
202	B02	TTATCTCG	AGAGTGCT	AGCACTCT	226	B05	AGGCATGC	GCAGTGTT	AACACTGC
203	C02	CATCAGTC	TTATCTCG	CGAGATAA	227	C05	AAGGTACT	AGGCATGC	GCATGCCT
204	D02	AAGCACAA	CATCAGTC	GACTGATG	228	D05	CACTAAGT	AAGGTACT	AGTACCTT
205	E02	CAGTGAGC	AAGCACAA	TTGTGCTT	229	E05	GAGTCCTA	CACTAAGT	ACTTAGTG
206	F02	GTCGAAGT	CAGTGAGC	GCTCACTG	230	F05	AGTCCTTC	GAGTCCTA	TAGGACTC
207	G02	TCTCATGC	GTCGAAGT	ACTTCGAC	231	G05	TTAGGAAC	AGTCCTTC	GAAGGACT
208	H02	CAGAAGAA	TCTCATGC	GCATGAGA	232	H05	AAGTCCAT	TTAGGAAC	GTTCCTAA
209	A03	CGGATAGT	CAGAAGAA	TTCTTCTG	233	A06	GAATACGC	AAGTCCAT	ATGGACTT
210	B03	CACGTGAG	CGGATAGT	ACTATCCG	234	B06	TCCAATCA	GAATACGC	GCGTATTC
211	C03	TACGATAC	CACGTGAG	CTCACGTG	235	C06	CGACGGTA	TCCAATCA	TGATTGGA
212	D03	CGCATGCT	TACGATAC	GTATCGTA	236	D06	CATTGCAT	CGACGGTA	TACCGTCG
213	E03	GCTTGCTA	CGCATGCT	AGCATGCG	237	E06	ATCTGCGT	CATTGCAT	ATGCAATG
214	F03	GAACGCAA	GCTTGCTA	TAGCAAGC	238	F06	GTACCTTG	ATCTGCGT	ACGCAGAT
215	G03	ATCTACCA	GAACGCAA	TTGCGTTC	239	G06	GAGCATAC	GTACCTTG	CAAGGTAC
216	H03	CACGAGCT	ATCTACCA	TGGTAGAT	240	H06	TGCTTACG	GAGCATAC	GTATGCTC

3. 補足資料: NGS と解析のガイドライン

表 29 SureSelect Max Index Primer Pairs 241-288 (緑色のプレート)

		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
241	A07	AAGAGACA	TGCTTACG	CGTAAGCA	265	A10	CAATGCTG	CATGAATG	CATTCATG
242	B07	TAGCTATG	AAGAGACA	TGTCTCTT	266	B10	CTTGATCA	CAATGCTG	CAGCATTG
243	C07	TCTGCTAC	TAGCTATG	CATAGCTA	267	C10	GCGAATTA	CTTGATCA	TGATCAAG
244	D07	GTCACAGA	TCTGCTAC	GTAGCAGA	268	D10	GTTCGAGC	GCGAATTA	TAATTCGC
245	E07	CGATTGAA	GTCACAGA	TCTGTGAC	269	E10	GCCAGTAG	GTTCGAGC	GCTCGAAC
246	F07	GAGAGATT	CGATTGAA	TTCAATCG	270	F10	AAGGTCGA	GCCAGTAG	CTACTGGC
247	G07	TCATACCG	GAGAGATT	AATCTCTC	271	G10	AGTGAAGT	CACTTATG	CATAAGTG
248	H07	TCCGAACT	TCATACCG	CGGTATGA	272	H10	GTTGCAAG	ATAACGGC	GCCGTTAT
249	A08	AGAGAGAA	TCCGAACT	AGTTCGGA	273	A11	AGCCGGAA	GTTGCAAG	CTTGCAAC
250	B08	GATCGTTA	AGAGAGAA	ттстстст	274	B11	AACAGCCG	AGCCGGAA	TTCCGGCT
251	C08	GCGCTAGA	GATCGTTA	TAACGATC	275	C11	CTAGTGTA	AACAGCCG	CGGCTGTT
252	D08	ATGACTCG	GCGCTAGA	TCTAGCGC	276	D11	GAGGCTCT	CTAGTGTA	TACACTAG
253	E08	CAATAGAC	ATGACTCG	CGAGTCAT	277	E11	CTCCGCAA	GAGGCTCT	AGAGCCTC
254	F08	CGATATGC	CAATAGAC	GTCTATTG	278	F11	CGCTATTG	CTCCGCAA	TTGCGGAG
255	G08	GTCAGAAT	CGATATGC	GCATATCG	279	G11	GTGTTGAG	CGCTATTG	CAATAGCG
256	H08	CATAAGGT	GCACTACT	AGTAGTGC	280	H11	TCACCGAC	GTGTTGAG	CTCAACAC
257	A09	TGTTGGTT	GATTCGGC	GCCGAATC	281	A12	CGGTAATC	TCACCGAC	GTCGGTGA
258	B09	ATACTCGC	TGTTGGTT	AACCAACA	282	B12	GTGACTGC	CGGTAATC	GATTACCG
259	C09	AATGCTAG	ATACTCGC	GCGAGTAT	283	C12	CGACTTGT	GTGACTGC	GCAGTCAC
260	D09	GCCTAGGA	AATGCTAG	CTAGCATT	284	D12	GATAGGAC	CGACTTGT	ACAAGTCG
261	E09	GCAACCGA	GCCTAGGA	TCCTAGGC	285	E12	AAGTACTC	GATAGGAC	GTCCTATC
262	F09	ATACTGCA	GCAACCGA	TCGGTTGC	286	F12	GCTCTCTC	AAGTACTC	GAGTACTT
263	G09	TCTCCTTG	ATACTGCA	TGCAGTAT	287	G12	CTACCAGT	GCTCTCTC	GAGAGAGC
264	H09	CATGAATG	TCTCCTTG	CAAGGAGA	288	H12	GATGAGAT	CTACCAGT	ACTGGTAG

表 30 SureSelect Max Index Primer Pairs 289-336 (赤色のプレート)

Primer	Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement		Index	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
289	A01	AGATAGTG	GATGAGAT	ATCTCATC	313	A04	AGCTACAT	GATCCATG	CATGGATC
290	B01	AGAGGTTA	AGATAGTG	CACTATCT	314	B04	CGCTGTAA	AGCTACAT	ATGTAGCT
291	C01	CTGACCGT	AGAGGTTA	TAACCTCT	315	C04	CACTACCG	CGCTGTAA	TTACAGCG
292	D01	GCATGGAG	CTGACCGT	ACGGTCAG	316	D04	GCTCACGA	CACTACCG	CGGTAGTG
293	E01	CTGCCTTA	GCATGGAG	CTCCATGC	317	E04	TGGCTTAG	GCTCACGA	TCGTGAGC
294	F01	GCGTCACT	CTGCCTTA	TAAGGCAG	318	F04	TCCAGACG	TGGCTTAG	CTAAGCCA
295	G01	GCGATTAC	GCGTCACT	AGTGACGC	319	G04	AGTGGCAT	TCCAGACG	CGTCTGGA
296	H01	TCACCACG	GCGATTAC	GTAATCGC	320	H04	TGTACCGA	AGTGGCAT	ATGCCACT
297	A02	AGACCTGA	TCACCACG	CGTGGTGA	321	A05	AAGACTAC	TGTACCGA	TCGGTACA
298	B02	GCCGATAT	AGACCTGA	TCAGGTCT	322	B05	TGCCGTTA	AAGACTAC	GTAGTCTT
299	C02	CTTATTGC	GCCGATAT	ATATCGGC	323	C05	TTGGATCT	TGCCGTTA	TAACGGCA
300	D02	CGATACCT	CTTATTGC	GCAATAAG	324	D05	TCCTCCAA	TTGGATCT	AGATCCAA
301	E02	CTCGACAT	CGATACCT	AGGTATCG	325	E05	CGAGTCGA	TCCTCCAA	TTGGAGGA
302	F02	GAGATCGC	CTCGACAT	ATGTCGAG	326	F05	AGGCTCAT	CGAGTCGA	TCGACTCG
303	G02	CGGTCTCT	GAGATCGC	GCGATCTC	327	G05	GACGTGCA	AGGCTCAT	ATGAGCCT
304	H02	TAACTCAC	CGGTCTCT	AGAGACCG	328	H05	GAACATGT	GACGTGCA	TGCACGTC
305	A03	CACAATGA	TAACTCAC	GTGAGTTA	329	A06	AATTGGCA	GAACATGT	ACATGTTC
306	B03	GACTGACG	CACAATGA	TCATTGTG	330	B06	TGGAGACT	AATTGGCA	TGCCAATT
307	C03	CTTAAGAC	GACTGACG	CGTCAGTC	331	C06	AACTCACA	TGGAGACT	AGTCTCCA
308	D03	GAGTGTAG	CTTAAGAC	GTCTTAAG	332	D06	GTAGACTG	AACTCACA	TGTGAGTT
309	E03	TGCACATC	GAGTGTAG	CTACACTC	333	E06	CGTAGTTA	GTAGACTG	CAGTCTAC
310	F03	CGATGTCG	TGCACATC	GATGTGCA	334	F06	CGTCAGAT	CGTAGTTA	TAACTACG
311	G03	AACACCGA	CGATGTCG	CGACATCG	335	G06	AACGGTCA	CGTCAGAT	ATCTGACG
312	H03	GATCCATG	AACACCGA	TCGGTGTT	336	H06	GCCTTCAT	AACGGTCA	TGACCGTT

3. 補足資料: NGS と解析のガイドライン

表 31 SureSelect Max Index Primer Pairs 337-384 (赤色のプレート)

		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #		P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
337	A07	TGAGACGC	GCCTTCAT	ATGAAGGC	361	A10	CTGAGCTA	GCACAGTA	TACTGTGC
338	B07	CATCGGAA	TGAGACGC	GCGTCTCA	362	B10	CTTGCGAT	CTGAGCTA	TAGCTCAG
339	C07	TAGGACAT	CATCGGAA	TTCCGATG	363	C10	GAAGTAGT	CTTGCGAT	ATCGCAAG
340	D07	AACACAAG	TAGGACAT	ATGTCCTA	364	D10	GTTATCGA	GAAGTAGT	ACTACTTC
341	E07	TTCGACTC	AACACAAG	CTTGTGTT	365	E10	TGTCGTCG	GTTATCGA	TCGATAAC
342	F07	GTCGGTAA	TTCGACTC	GAGTCGAA	366	F10	CGTAACTG	TGTCGTCG	CGACGACA
343	G07	GTTCATTC	GTCGGTAA	TTACCGAC	367	G10	GCATGCCT	CGTAACTG	CAGTTACG
344	H07	AAGCAGTT	GTTCATTC	GAATGAAC	368	H10	TCGTACAC	GCATGCCT	AGGCATGC
345	A08	ATAAGCTG	AAGCAGTT	AACTGCTT	369	A11	CACAGGTG	TCGTACAC	GTGTACGA
346	B08	GCTTAGCG	ATAAGCTG	CAGCTTAT	370	B11	AGCAGTGA	CACAGGTG	CACCTGTG
347	C08	TTCCAACA	GCTTAGCG	CGCTAAGC	371	C11	ATTCCAGA	AGCAGTGA	TCACTGCT
348	D08	TACCGCAT	TTCCAACA	TGTTGGAA	372	D11	TCCTTGAG	ATTCCAGA	TCTGGAAT
349	E08	AGGCAATG	TACCGCAT	ATGCGGTA	373	E11	ATACCTAC	TCCTTGAG	CTCAAGGA
350	F08	GCCTCGTT	AGGCAATG	CATTGCCT	374	F11	AGACCATT	ATACCTAC	GTAGGTAT
351	G08	CACGGATC	GCCTCGTT	AACGAGGC	375	G11	CGTAAGCA	AGACCATT	AATGGTCT
352	H08	GAGACACG	CACGGATC	GATCCGTG	376	H11	TCTGTCAG	CGTAAGCA	TGCTTACG
353	A09	AGAGTAAG	GAGACACG	CGTGTCTC	377	A12	CACAGACT	TCTGTCAG	CTGACAGA
354	B09	AGTACGTT	AGAGTAAG	CTTACTCT	378	B12	GTCGCCTA	CACAGACT	AGTCTGTG
355	C09	AACGCTGC	AGTACGTT	AACGTACT	379	C12	TGCGCTCT	GTCGCCTA	TAGGCGAC
356	D09	GTAGAGCA	AACGCTGC	GCAGCGTT	380	D12	GCTATAAG	TGCGCTCT	AGAGCGCA
357	E09	TCCTGAGA	GTAGAGCA	TGCTCTAC	381	E12	CAACAACT	GCTATAAG	CTTATAGC
358	F09	CTGAATAG	TCCTGAGA	TCTCAGGA	382	F12	AGAGAATC	CTCTCACT	AGTGAGAG
359	G09	CAAGACTA	CTGAATAG	CTATTCAG	383	G12	TAATGGTC	AGACGAGC	GCTCGTCT
360	H09	GCACAGTA	CAAGACTA	TAGTCTTG	384	H12	GTTGTATC	TAATGGTC	GACCATTA

4. リファレンス

キットの内容	. 42
コンポーネントの内容	. 42
トラブルシューティングガイド	. 43
クイックリファレンスプロトコル: Max Fast ハイブリダイゼーションターゲットエンリッチメント	. 45

この章では、キットに含まれている試薬内容、インデックス配列、トラブルシュート情報、プロトコルのクイックリファレンスを記載しています。

キットの内容

SureSelect Max Fast ハイブリダイゼーションターゲットエンリッチメントキットワークフローでは表 32 の試薬キットを使用します。各キットに含まれる構成品および試薬を表 32 から表 35 に記載しています。

表 32 SureSelect Max Fast ハイブリダイゼーションターゲットエンリッチメントキット

SureSelect Max キットとコンポーネント名	コンポーネント型番*		
称	16 ハイブリキット	96 ハイブリキット	
SureSelect Max Fast Hyb Kit (G9689A/	G9689B)		
SureSelect Max Target Enrichment Kit Fast Hyb Module, Box 1	5282-0128	5282-0130	Room Temperature
SureSelect Max Target Enrichment Kit Fast Hyb Module, Box 2	5282-0129	5282-0131	−20°C
SureSelect Streptavidin Beads	5191-5741	5191-5742	+4°C
SureSelect Max Blockers and Primers Module for ILM (G9699A/G9699B)	5282-0136	5282-0137	−20°C
SureSelect Max Purification Beads (G9962A/G9962B)	5282-0225	5282-0226	+4°C

^{*}コンポーネント型番はオーダーに使用することはできません。G からはじまる試薬キット型番をご使用ください。

コンポーネントの内容

表 33 SureSelect Max Target Enrichment Kit Fast Hyb Module, Box 1 の内容

Kit Component	16 ハイブリキット (p/n 5282-0128)	96 ハイブリキット(p/n 5282-0130)
SureSelect Binding Buffer	bottle	bottle
SureSelect Wash Buffer 1	bottle	bottle
SureSelect Wash Buffer 2	bottle	bottle

表 34 SureSelect Max Target Enrichment Kit Fast Hyb Module, Box 2 の内容

Kit Component	16 ハイブリキット (p/n 5282-0129)	96 ハイブリキット (p/n 5282-0131)
SureSelect Max Fast Hyb Buffer	bottle	bottle
SureSelect RNase Block	tube with purple cap	tube with purple cap
Amplification Master Mix	tube with red cap	bottle

表 35 SureSelect Max Blockers and Primers Module for ILM の内容

Kit Component	16 ハイブリキット(p/n 5282-0136)	96 ハイブリキット (p/n 5282-0137)
Blocker Mix, ILM	tube with blue cap	tube with blue cap
SureSelect Post-Capture Primer Mix	tube with clear cap	tube with clear cap

トラブルシューティングガイド

ハイブリダイゼーション前に、プレキャプチャプーリングライブラリの容量を減らす濃縮遠心機がない場合

- 通常のプレキャプチャプーリングハイブリダイゼーションプロトコルでは 4 または 1.6 μg のライブラリ DNA がプールされた 12 μL のサンプルを必要とし、必要に応じて液量を減らすために濃縮遠心を行います。濃縮遠心を行えない場合は以下のプロトコルの変更を行い、ライブラリプールの濃縮を行ってください。この変更はライブラリの複雑性を損なう可能性があります。以下の濃縮プロトコルに従ってください。:
- ライブラリの複雑性の低下を最低限にするために 12 ページの表 7 に記載の 2.5 倍量のライブラリ DNA を プールします。例: SureSelect XT HS PreCap Human All Exon V8 プローブでエンリッチする場合は、各 インデックスライブラリを 1250 ng ずつ 8 サンプル、合計 10 μg のライブラリ DNA をプールします。
- 追加の磁性ビーズ精製を行い、各ライブラリプールを濃縮します。22~23 ページの精製インストラクションに 従い、ステップ 3 のビーズ液量をサンプル液量の 1.8x になるよう変更してください。
- ステップ 13 の溶出を 24 µL の Nuclease-free water で行います。 12 µL をハイブリダイゼーション反応に使用します。 残りのライブラリプールはハイブリダイゼーション反応に使用しません。

ポストキャプチャライブラリ収量が少ない

- ✓ プロトコル中に溶解、温度コントロール、ピペッティング、混合など特定の指示がある場合は、最適なパフォーマンスに影響します。反応をセットアップする際に必ず指示に従うようにしてください。
- ✓ PCR のサイクル数の最適化が必要な場合があります。キャプチャ後 PCR サイクル数を 1~2 サイクル増やし、ライブラリ調製とターゲットエンリッチを再度実施してください。
- ✓ ハイブリダイゼーションで使用した RNA プローブに原因がある可能性があります。使用したキャプチャプローブ のチューブや Certificate of Analysis に記載されている使用期限を確認してください。保存および取り扱 いについては、推奨される内容に従ってください。 Probe Hybridization Mix は、15 ページの内容にて、使 用する直前に調製してください。 また、キャプチャライブラリを含む溶液は長時間室温に置かないでください。
- ✓ 磁性ビーズの精製ステップからの収量が最適ではない可能性があります。以下の要因を考慮してください。
 - プトロコルに記載されているビーズと試薬の取り扱い手順をすべて守ってください。特にビーズを使用前に少なくとも30分室温で平衡化させ、各精製手順で新鮮な70%エタノール (使用当日に調製)を使用してください。
 - サンプル溶出直前のステップで磁性ビーズが過度に乾燥していないことを確認してください (22 ページのステップ 12)。ビーズペレットを頻繁に確認し、エタノールが蒸発したらすぐに乾燥ステップを終了してください。
 - ・ 溶出のためのインキュベーション時間を延長することで (最長 10 分)、特に長い DNA 断片の収量が 改善することがあります。

エレクトロフェログラムのピーク位置が想定と異なる

- ✓ FFPE サンプル由来 DNA または RNA サンプルは、ターゲットエンリッチメントに最適なサイズよりも短いフラグメントを含むため、サイズ分布が短くなることがあります。各 SureSelect Max ライブラリ調製モジュールユーザーガイドの FFPE DNA または RNA の品質ガイドラインを参照ください。
- √ ポストキャプチャ精製時のライブラリフラグメントのサイズ選別は、サンプルと精製ビーズの比率に依存しています。ビーズを分注する前に、しっかりと均一になるまで懸濁し、22ページに記載のビーズ液量を使用していることを確認してください。

4. リファレンス

オンターゲット率が低い

- ✓ ハイブリダイゼーション後の洗浄の stringency が想定より低いことが考えられます。洗浄操作は記載されているとおりに実施してください。その際特に、SureSelect Wash Buffer 2 による洗浄における下記に示した点にご留意ください。
 - SureSelect Wash Buffer 2 が 70°C に予め温められていること (18 ページ参照)、0.2 mL の液量が効果的に加熱できるサーマルサイクラーを使用すること。 Wash buffer を分注したプラスチックウェアが液のほとんどがブロックでおおわれるぐらい、 しっかりとサーマルサイクラーブロックに入っており十分加熱されていること。
 - 洗浄中は、ピペッティングとボルテックスミキサでビーズが均一な状態に混合されていること (19ページ 参照)
- ✓ ハイブリダイゼーションの際、ハイブリダイゼーション反応液を室温に晒す時間を最小にしてください。混合して 戻すステップ (16 ページのステップ 7 と 8) でサンプルの温度を 65°C に保てるように、ボルテックスとチューブ やプレートのスピンダウンのための遠心装置は、極力サーマルサイクラーの近くにおいてください。

シーケンスの結果で AT-ドロップアウトが高く uniformity of coverage が低い

- ✓ AT-ドロップアウトが高いことは、ハイブリダイゼーションの条件が厳し過ぎて、AT-rich なターゲットを求められる カバレッジレベルが得られなかったことが考えられます。
 - ・ SureSelect XT HS Human All Exon V8 プローブまたは SureSelect XT HS Clinical Research Exome V4 を使用し、(68°C 1 時間のセグメントを含む) 14 ページの表 8 のハイブリダイゼーションプログラムでターゲットエンリッチしたライブラリは、68°C 1 時間のセグメントを含めずにターゲットエンリッチメントを行ってください。
 - ・ 他のキャプチャプローブは、ハイブリダイゼーションでのサーマルサイクラプログラムについて、Segment 4 と 5 のハイブリ温度を 68°C から 65°C もしくは 60°C に下げて (14 ページ表 9 参照)、再度低い stringency の条件でハイブリダイゼーションを行ってください。
- ✓ Fast ハイブリダイゼーションプロトコルで使用しているカスタムプローブが、HS/90-min Hyb ワークフロー用に デザインされており、XT/Overnight Hyb ワークフロー用でないことを確認してください。XT/Overnight Hyb デザインの場合は、SureDesign で XT HS/90 min Hyb パラメーターで再デザインしてください。

MBC 付きのライブラリを調製したが、シークエンス解析パイプラインで MBC を使用しない

- ✓ 下流の解析に進む前に、Read1 および Read2 の最初の 5 塩基をマスキングまたはトリミングすることで除去します。
 - bcl2fastq を使用してデマルチプレックスする場合、MBC はベースマスク N5Y*,I8,I8,N5Y*を含めることで、BCL Concert でデマルチプレックスする場合、MBC はサンプルシートのヘッダーに:
 OverrideCycles,N5Y*;I8;I8;N5Y*を含めることでトリミングできます。両方の方法で*はマスクした 5 塩基を除いた後の実際のリード長に置き換えてください。例えば、29 ページ表 22 にある、151 サイクルでの 2 x 150 NGS の場合は N5Y146,I8,I8,N5Y146 を含めることでマスクできます。NとYの合計は RunInfo.xml ファイルにあるリード長と一致する必要があります。
 - AGeNT の Trimmer モジュールや seqtk のような適切な処理ツールを用いることでデマルチプレックスした FASTQ ファイルから最初の 5 塩基をトリミングします。アジレント製以外のアダプタートリミングツールは反対側のアダプター (28 ページの図 4 参照) から MBC を除くことができず、アライメントの質に影響が出る可能性があるため、事前に検証が必要です。

クイックリファレンスプロトコル: Max Fastハイブリダイゼーションターゲットエンリッチメント

実験操作に慣れた方向けに、プロトコルの手順を以下に要約します。試薬の混合手順や装置の設定など、プロトコル詳細の全てに慣れるまでは完全なプロトコルを使用してください。

ステップ	工程のサマリー				
	Hybridization				
ライブラリの準備	12 μL のライブラリまたはライブラリプールをウェルに加え、氷上に置く。 ポストキャプチャプーリング: 12 μL の原液のライブラリ、500 ng gDNA ライブラリまたは 200 ng cDNA ラ イブラリを加える。 プルキャプチャプーリング: 12 ページの 表 7 を参照にライブラリをプールする。液量が 12 μL となるように 45°C 以下の温度で濃縮遠心を行う。 Nuclease-free water で 12 μL に調整し、ボルテックス後スピンダ ウン。				
サーマルサイクルプログラム	適切なハイブリダイゼーションプログラム (表 36) を設定し、サンプルのロード前に温める。				
ハイブリダイゼーション前ブロッキングプ ロトコルの開始	5 μL Blocker Mix ILM を各サンプルに添加。混合し、スピンダウン後サーマルサイクラーにセット。 セグメント 1~3 のプログラムを開始し、Hybridization 試薬を準備。 Probe/Hyb Mix を添加するまで 65°C Hold。				
25% RNase Block の調製	8 Hyb 反応:4.5 μL RNAse Block + 13.5μL nuclease-free H ₂ O 24 Hyb 反応: 13 μL RNAse Block + 39 μL nuclease-free H ₂ O 氷上で調製し、混合しスピンダウンした後氷上に置く。				
Probe/Hyb Mix の調製	表 37 に従い、プローブデザインのサイズに応じた Probe/Hyb Mix を調製。 室温で調製し、混合しスピンダウンした後室温に置く。				
ハイブリダイゼーションの実行	サーマルサイクラー内のサンプル (セグメント 3、Hold) に 13 μL の Probe/Hyb Mix を添加し、ピペッティングで混合。 ウェルを完全に密封し、サーマルサイクルプログラムを再開して残りのハイブリダイゼーション反応を完了する。 ハイブリダイゼーション反応中にキャプチャ試薬を準備する (21°C で一晩 Hold する、2 日間のワークフローの場合を除く)				
	Capture				
Wash Buffer 2 の分注	SureSelect Wash Buffer 2 をサンプル当たり 200 µL ずつ 6 本分注する。				
ストレプトアビジンビーズの調製	サンプル当たり 50 μL の SureSelect Streptavidin beads を、200 μL の SureSelect Binding Buffer で 3 回洗浄する。最後の洗浄後、200 μL の SureSelect Binding Buffer で懸濁し、68°C で 10 分間予熱する。				
ハイブリダイズしたライブラリのキャプチ ャ	ハイブリダイズしたサンプル (〜30 μL) を予熱したビーズ (200 μL) に加え、ピペッティングでよく混合し、68°C で 10 分間インキュベーション。 インキュベーション中にサンプル当たり 200 μL ずつ 6 本分注した SureSelect Wash Buffer 2 を 70°C で予熱する。				
キャプチャしたライブラリの洗浄	サンプルを軽くスピンダウンし、磁石スタンドでビーズを集め、上清を取り除く。 室温の 200 μL SureSelect Wash Buffer 1 で洗浄 予熱した SureSelect Wash Buffer 2 で 6 回洗浄 (各洗浄では 200 μL の 70°C Wash Buffer 2 を加え、室温でピペッティングまたはボルテックスで混合、70°C で 5 分インキュベート後、室温でビーズを集め、上清を取り除く。) 24 μL nuclease-free H ₂ O で再懸濁。ピペッティングで混合後、氷上に置く。				
	Post-capture amplification				
サーマルサイクルプログラム	表 38 のサーマルサイクルプログラムを入力し、サンプルロード前に温める。				
ポストキャプチャ PCR mix の調製	8 Hyb 反応:225 μL Amplification Master Mix + 9 μL SureSelect Post-Capture Primer Mix 24 Hyb 反応:650 μL Amplification Master Mix + 26 μL SureSelect Post-Capture Primer Mix 氷上で調製し、混合しスピンダウンした後氷上に置く。				
ビーズ結合ライブラリの増幅	26 μL の Post-capture PCR Mix を 24 μL のキャプチャ後ライブラリビーズ懸濁液に添加。 ピペッティングで混合し (スピンダウンしない)、サーマルサイクラーにセットし、プログラムを開始。				

4. リファレンス

増幅したライブラリの精製	50 μL の増幅ライブラリビーズ懸濁液に 50 μL の精製ビーズを添加し、混合後、室温で 5 分間インキュベート。磁石スタンドでビーズを集め、上清を取り除き、70%エタノールで 2 回洗浄。 25 μL の Low TE Buffer で溶出。混合後、2~5 分インキュベートし、磁石スタンドでビーズを集め、上清を回収する。
ライブラリの品質確認と定量	TapeStation あるいは Fragment Analyzer System で品質確認を行う。

表 36 ハイブリダイゼーションプログラム (30 uL vol、蓋は 105℃に加熱)

セグメント	プローブ	サイクル数	温度	時間	2-day workflow
1	All Probes	1	95°C	5 minutes	
2	All Probes	1	65°C	10 minutes	
3	All Probes	1	65°C	Hold	
4	All Probes	60	68°C [‡]	1 minutes	ストレプトアビジンビーズ調製とキャプチャ
			37°C	3 seconds	試薬の準備を開始せずに、2 日目に行う
5	SureSelect XT HS Human All	1	68°C	60 min	
	Exon V8/V8+UTR/V8+NCV or Clinical Research Exome V4		68°C	Hold briefly	16 時間まで 21°C Hold (Post-hyb overnight hold)
	All other XT HS Probes		68°C	Hold briefly	16 時間まで 21°C Hold (Post-hyb overnight hold)

表 37 Probe/Hyb Mix の調製

	Probe designs ≥3 Mb			Probe designs <3 Mb		
試薬	Per hyb Reaction	8 Hybs	24 Hybs	Per hyb Reaction	8 Hybs	24 Hybs
25% RNase Block solution	2 µL	18 µL	50 μL	2 µL	18 µL	50 μL
Probe	5 μL	45 µL	125 µL	2 µL	18 µL	50 μL
SureSelect Max Fast Hyb Buffer	6 µL	54 µL	150 μL	6 µL	54 µL	150 µL
Nuclease-free water	_	_	_	3 μL	27 µL	75 µL
Total	13 µL	117 µL	325 µL	13 µL	117 µL	325 µL

表 38 ポストキャプチャ PCR サイクルプログラム (50 µL vol; heated lid at 105°C)

セグメント	サイクル数			温度	時間
1	1			98°C	45 seconds
2	gDNA libraries (DNA input)	OR	cDNA libraries (RNA input) Probes <0.2Mb: 16 cycles Probes 0.2-3 Mb: 14 cycles Probes 3-5 Mb: 13 cycles Probes >5 Mb: 12 cycles	98°C	15 seconds
	Probes < 0.2Mb: 16 cycles			60°C	30 seconds
	Probes 0.2-3 Mb: 12-16 cycles Probes 3-5 Mb: 11-12 cycles			72°C	30 seconds
	Probes >5 Mb: 10-11 cycles				
3	1			72°C	1 minute
4	1			4°C	Hold

G240699

ゲノミクス関連製品に関するお問い合わせ

Tel: 0120 - 477 - 111

Mail: email_japan@agilent.com

電話・メール受付時間 土、日、祝祭日、5/1を除く

9:00~12:00、13:00~17:00

※プロトコル名とともに、テクニカルな質問と明示してください。

※価格、納期等のご質問は担当営業にご連絡ください。